VPLIV POPRAVIL NA MIKROSTRUKTURO ZVAROV JEKLA NIOMOL 490K

INFLUENCE OF REPAIRS ON MICROSTRUCTURE OF STEEL NIOMOL 490K WELDS

Roman Celin¹, Janez Tušek²

¹Inštitut za kovinske materiale in tehnologije, Lepi pot 11, 1000 Ljubljana, Slovenija ²Institut za varilstvo, Ptujska 19, 1000 Ljubljana, Slovenija

Prejeme rokopisa - received: 1999-12-20; sprejem za objavo - accepted for publication: 2000-02-15

Pri varjenju jeklenih konstrukcij so pogosta popravila zvarjenih spojev zaradi odkritih, nedopustnih napak v zvaru. Še posebej so za varjenje zahtevna visokotrdnostna mikrolegirana drobnozrnata jekla. Opravljene so bile preiskave, ki naj bi pokazale, kako popravila zvara pri jeklu Niomol 490K vplivajo na mikrostrukturo in toplotno vplivano cono zvara. Mikrostrukturne preiskave so bile opravljene na šestih zvarih, zavarjenih z različnimi parametri varjenja. V prispevku so predstavljeni rezultati teh preiskave.

Ključne besede: varjenje, mikrostruktura, popravilo, toplotno vplivana cona

During the erection of steel assemblies, repairs of not allowable defects in welds are necessary. Very demanding for welding are the HSLA steels. Investigations were preformed to establish the influence of repairs of welds on the microstructure and the heat affected zone on the steel Niomol 490K. The microstructure of six joints prepared using different welding parameters was investigated in SEM. Results are presented in this paper.

Key words: welding, microstructure, repair, heat affected zone

1 UVOD

Pri gradnji zahtevnih jeklenih konstrukcij prihaja tudi do po popravil zvarjenih spojev. Takšna popravila so posledica nedopustnih napak v zvaru, ki so bile odkrite z neporušitvenimi preiskavami. Med take zahtevne jeklene konstrukcije prav gotovo spada tudi nadzemni valjasti rezervoar za naftne derivate R-17, zgrajen v Instalaciji, d.o.o., na Serminu pri Kopru. Zgrajen je iz drobnozrnatega mikrolegiranega jekla Niomol 490K.

Pri varjenju mikrolegiranih drobnozrnatih jekel se pojavljajo težave, ki so predvsem povezane z nastajanjem in širjenjem razpok v zvaru ali v toplotno vplivani coni in jih lahko opredelimo kot:

- razpokljivost v hladnem nastajanje razpok zaradi zakalitve pri hitrem ohlajanju in prisotnosti vodika, zareznega vpliva in omejenega krčenja
- razpokljivost pri ponovnem segrevanju zaradi slabih duktilnih lastnosti v temperaturnem območju okoli 600°C
- nastanek in širjenje razpok pri obratovanju pod obremenitvijo zaradi slabših duktilnih lastnosti in zmanjšane lomne žilavosti v hladnem kot posledica izločilnega utrjevanja pri daljšem zadrževanju v področju 500°C do 800°C
- nižja odpornost na napetostno korozijo.

Poleg naštetih razlogov za razpoke lahko nastopijo v celotnem zvarnem spoju z varjenjem še naslednji učinki:

 strukturne spremembe v toplotno vplivani coni, povečanje trdote, zmanjšanje duktilnosti, kar vpliva na spremembo mehanskih lastnosti v toplotno vplivani coni

- absorbcija vodika v zvaru ali celo v toplotno vplivani coni
- termične napetosti, ki povzročijo zaostale napetosti v materialu
- izločilno utrjevanje s tvorbo karbidov povezano z znižano lomno žilavostjo v toplotno vplivani coni zvara.

Opravili smo nekaj preiskav, ki naj bi pokazale, kako popravilo zvara z varjenjem vpliva na mikrostrukturo zvara in toplotno vplivano cono.

2 EKSPERIMENTALNO DELO

Preiskave smo opravili na sočelnih zvarnih spojih iz mikrolegiranega jekla Niomol 490K z V-zvarom debeline pločevine 15 mm. Varili smo ročno obločno z oplaščeno elektrodo z oznako EVB NiMo. Vzorec A1 smo zavarili z optimalnim vnosom energije in vzorec B1 s povečanim vnosom energije na enoto dolžine vara. Vzorca A2 in B2 sta bila po varjenju izžlebljena s temenske strani do korenskega varka in ponovno zavarjena z optimalnim vnosom energije A2 in povečanim vnosom energije B2 (enojno popravilo). Vzorca A3 in B3 sta bila tako izžlebljena dvakrat in dvakrat ponovno zavarjena (dvojno popravilo). Na **sliki 1** so prikazane izvedbe posameznih vzorcev.

Vzorce serije A smo zavarili z večjim številom varkov, ker smo varili z manjšimi jakostmi toka, kar R. CELIN, J. TUŠEK: VPLIV POPRAVIL NA MIKROSTRUKTURO ZVAROV...

Slika 1: Skice zavarjenih spojev Figure 1: Drawings of the welded joints

pomeni, da je bilo tudi odtaljevanje oplaščene elektrode počasnejše. Pri vseh zvarih so bili korenski varki zavarjeni z elektrodo premera 3,25 mm, polnilni varki pa z elektrodo premera 4 mm.

Vnesene energije v zvar smo izračunali z enačbo 1.

$$E = \frac{I \cdot U}{v_v} \left[\frac{A \cdot U \cdot s}{cm} = \frac{J}{cm} \right]$$
(1)

V **tabeli 1** so podani varilni parametri za posamezne vzorce.

Tabela 1: Podatki o varilnih parametrih

vzorec	tok	napetost	hitrost varjenja		
	I [A]	U [V]	v _v [cm/s]		
A1	153	23	0,28 do 0,5		
A2	160	23	0,35 do 0,5		
A3	162 do 158	23	0,29 do 0,53		
B1	175	23	0,22 do 0,26		
B2	195	23	0,22 do 0,31		
B3	180 do 184	23	0,19 do 0,27		
\mathbf{A}^*	104	23	0,16		
B*	112	23	0,17		

c	podatki	0	varilnih	parametrih	za	oba	korenska	varka

V **tabeli 2** je podan vnos energije v kJ/cm za posamezni varek vzorcev A in B.

Slika 2: Makroobrusi zavarjenih spojev Figure 2: Prepared samples of the welded joints

Tabela 2: Vnos energije v vzorce A in B [kJ/cm]

	A1	A2	A3	B1	B2	B3	lega
1.	14,5	14,5	14,5	14,8	14,8	14,8	koren
2.	12,5	8	10	14	12,3	14,5	_
3.	8,1	9,5	12,6	19,3	18,7	21,2	_
4.	7,5	7,1	8,4	16,7	13,1	18,4	
5.	7,5	7,8	9,9	18,3	14,8	17,6	
6.	6,5	8,1	8,6	17,1	17,7	15,6	
7.	7,9	8,1	8,2	17,1	16,1	16,4	_
8.	8,3	7,4	9,4	17,1*	13,7*	16,8*	*teme
9.	7,9	7,4	7,4				
10.	8,1	7,4	6,9		_	_	_
11.	11,9	10	12,1		_	_	_
12.	9,7	10*	10				
13.	11*		7*	_		_	*teme
12. 13.	9,7	10*	10 7*	_		_	*teme

3 PRIKAZ DOBLJENIH REZULTATOV

Na pripravljenih vzorcih so bile opravljene metalografske preiskave, preiskave v SEM, meritve trdot HB in mikrotrdot HV ter meritev udarne žilavosti po Charpy-ju. Na **sliki 2** so prikazani makroobrusi vseh šestih zvarov (A1, A2, A3, B1, B2, B3).

S posnetkov je razvidno, da so si zavarjeni spoji A1, A2, A3 zelo podobni in med njimi ni opaziti pomembnih razlik. Na posnetkih A2 in A3 skoraj ni videti, da sta bila zvara izbrušena in ponovno zavarjena. Pomembno pri popravilih je, da je zvar na mestu popravila izbrušen do osnovnega materiala. S slik je razvidno, da je toplotno vplivana cona vzorcev A2 in A3 skoraj identična kot pri vzorcu A1. Tudi zvari serije B so si med seboj po videzu

Slika 3: Zvari s toplotno vplivano cono Figure 3: Welds with the heat affected zone

R. CELIN, J. TUŠEK: VPLIV POPRAVIL NA MIKROSTRUKTURO ZVAROV...

zelo podobni. Opazna pa je razlika v širini toplotno vplivane cone med obrusi vzorcev A in vzorcev B. Toplotno vplivana cona vzorcev B je širša kot pri vzorcih serije A. Večja širina toplotno vplivane cone še ne pomeni nujno poslabšanja lastnosti zvarjenega spoja. Pomembno je, kakšna je rast kristalnih zrn tik ob liniji varjenja, kako naslednji varek toplotno vpliva na groba zrna ob liniji spajanja in ali so ta zrna izolirana na lokalnih področjih ter obdana s plastjo drobnih zrn. **Na sliki 3** so prikazani posnetki zvarov s toplotno vplivano cono vseh vzorcev.

Na vseh šestih vzorcih je bilo z optičnim mikroskopom pregledano področje spajanja in preostanek toplotno vplivane cone od temena do korena zvara. Velikost kristalnih zrn je bila ocenjena v skladu z ASTM E112. Velikost kristalnih zrn osnovnega materiala je bila ocenjena z 9 do 12. Ob liniji spajanja imajo kristalna zrna zaradi toplotnega vpliva varjenja različno velikost med 3 do 9, na posameznih mestih tudi do 12 po ASTM testnih slikah. Večinoma imajo najbolj groba zrna velikost 4. Res grobozrnata mikrostruktura se pojavlja kot strjevalna struktura samega zvara na zadnjih dveh varkih v temenu. Razlik v velikosti zrn na liniji spajanja med vzorci A in B ni opaziti. Področje povečanih zrn se nadaljuje v področje rekristaliziranih zrn z velikostjo 12 ali več, ki nato preide v mikrostrukturo osnovnega materiala z velikostjo 9 do 12. Tak potek je značilen za vseh 6 vzorcev.

Preko temena in korena zvara so bile pri vseh šestih vzorcih izmerjene trdote HB. Merilne točke so bile izbrane dva milimetra pod površino osnovnega materiala, **slika 2**. Na sredini zvara je bila postavljena prva točka meritve ter nato s korakom 2 mm levo in desno preko toplotno vplivane cone do osnovnega materiala. Rezultati meritev trdot so podani v **tabeli 3**.

Trdote v toplotno vplivani coni v temenu nikjer ne presegajo vrednosti 230 HV. Pri zvarih serije B so vrednosti nekoliko nižje, večinoma pod 220 HB. Izmerjene vrednosti HB kažejo na to, da jeklo pri danih

Slika 4: Mikrostruktura jekla Niomol 490 K **Figure4:** Microstucture of the steel Niomol 490 K

A1	teme	176	162	154	213	228	216	216*	210	216	216	228	200*	162	172
	koren	180	176	176	165	162	190	210*	200	195	162	162	180	180	176
A2	teme	176	162	176	228	216	216	216	210*	216	216	216	190 *	157	169
	koren	176	176	176	161	176	210	210*	200	190	165	176	176	176	
A3	teme	176	190	228	216	216	200	210*	213	216	216	210	180	169 *	176
	koren	176	176	176	162	190	200*	200	180	180	210	210	216	216	
B1	teme	169	162	200	228	213	210	210*	216	216	210	210	190	162*	
	koren	176	176	169	162	169	180	190*	180	162	153	169	172	169	
B2	teme	176	210	210	210	200	205	210*	216	210	213	216*	169	153	169
	koren	176	169	169	159	162	180	180*	176	178	165	159	169	176	176
B3	teme	162	162	169∎	200	200	210	210	200	210*	190	200	190	176*	162
	koren	176	169	162	165	147	159	169	169	176*	176	163	163	169	165

Tabela 3: Rezultati meritev trdot HB (RC 60)

* izmerjene trdote v središču zvara

[•] izmerjene trdote v toplotno vplivani coni levo od sredine zvara

• izmerjene trdote v toplotno vplivani coni desno od sredine zvara

R. CELIN, J. TUŠEK: VPLIV POPRAVIL NA MIKROSTRUKTURO ZVAROV...

Slika 5: Groba zrna toplotno vplivane cone vseh vzorcev Figure 5: Coarse grains in the heat affected zone of all samples

parametrih varjenja v toplotno vplivani coni ne zakali in zato ni nagnjeno k tvorbi razpok v hladnem.

V toplotno vplivani coni na obeh straneh zvara in zvaru samem, kjer lahko pričakujemo konice vrednosti trdot, so bile dodatno izmerjene mikrotrdote HV (500 g). Največje izmerjene vrednosti so podane v **tabeli 4**.

Tabela 4: Največje izmerjene mikrotrdote HV (500 g)

	toplotno vplivana cona (levo)	zvar	toplotno vplivana cona (desno)
A1	198	245	213
A2	249	241	219
A3	189	249	184
B1	184	234	179
B2	207	237	230
B3	234	226	213

Iz rezultatov, podanih v **tabeli 4**, je razvidno, da trdotna konica ne preseže 250 HV.

Mikrostrukturne preiskave zvarjenih spojev v SEM so bile narejene v toplotno vplivanem področju osnovnega materiala ob meji z naloženim materialom, kjer so kristalna zrna zaradi pregretja zrasla, ter v samem naloženem materialu.

Na **sliki 4** je prikazana feritno bainitna mikrostruktura osnovnega materiala (SEM, povečavi 6000-krat in 10000-krat). V feritni osnovi se opazijo drobni precipitati, po mejah kristalnih zrn pa jih ni opazili.

Na **sliki 5** je prikazana mikrostruktura (pov. 6000-krat) toplotno vplivane cone v področju grobih kristalnih zrn posameznih vzorcev. Mikrostrukturne značilnosti vseh vzorcev so podobne. V toplotno vplivani coni ni nikjer opaziti precipitatov, izločenih po mejah kristalnih zrn. V feritnih zrnih se opazi, da je precipitatov več v področju drobnejših zrn, kjer je bilo pregretje manjše. V področju grobih zrn se izrazito opazijo meje podzrn. V naloženem materialu ni precipitatov.

Po končanih metalografskih pregledih vzorcev zvarov so bili izdelani še preizkušanci z zarezo ISO-V za preizkus udarne žilavosti po Charpy-ju. Zareze so bile postavljene v sredini zvarov in v toplotno vplivanih conah vzorcev. Temperatura vzorcev pri preizkušanju je bila -20°C. Rezultati udarne žilavosti po Charpy-ju so predstavljeni v **tabeli 5**.

	sre	edina zva	ara	toplotno vplivana cona			
A1	151	124	140	206	220	208	
A2	130	120	83	231	222	238	
A3	152	130	144	221	230	250	
B1	95	56	87	206	220	203	
B2	103	83	80	92	207	113	
B3	81	94	80	194	198	220	

Tabela 5: Udarna žilavost vzorcev [J] pri -20°C

Žilavost čistega vara je pri seriji vzorcev A boljša od serije B. Pri seriji vzorcev B je večji delež lite strukture zato so vrednosti udarne žilavosti nižje. V toplotno vplivani coni se udarna žilavost vzorcev serije A in B ne razlikuje dosti. Izjema so vrednosti v toplotno vplivani coni vzorca B2.

4 SKLEP

V okviru nadzora nad kvaliteto izdelave in montaže jeklene konstrukcije nadzemnega valjastega rezervoarja R-17 v Instalacija, d.o.o., so bile opravljene preiskave, ki naj bi pokazale vpliv večkratnih popravil zvarjenega spoja na mikrostrukturo zvara in toplotno vplivano cono. Iz rezultatov metalografskih pregledov, pregledov v SEM, merjenja trdot HB, merjenja mikrotrdot HV in udarne žilavosti po Charpy-ju je razvidno, da ni velikih razlik med vzorci serije A in B. Varjenje z vnosom energije okoli 10 kJ/cm omogoča izvedbo kakovostnega zavarjenega spoja. Tudi varjenje s povečanim vnosom energije (**tabela 2**) ne vpliva bistveno na mikrostrukturo zvara. Popravila zvarjenih spojev z brušenjem in ponovnim varjenjem ne poslabšajo zvarjenega spoja ob naslednjih pogojih:

- izbrušen mora biti ves zvar do osnovnega materiala
- ponovno varjenje mora potekati pod enakimi pogoji kot prvotno.

Katere vnesene energije so kritične za jeklo Niomol 490K in kako te vplivajo na mikrostrukturo zvarjenega spoja, pa je predmet nadaljnih preiskav.

5 LITERATURA

- ¹ J. Vojvodič Tuma, B. Ule, S. Ažman, *Kovine zlit. tehnol.*, 28 (**1994**) 1-2, 183-187
- ² J. Vojvodič Tuma, Kovine zlit. tehnol., 32 (1998), 1-2, 95-98
- ³ J. Tušek, *Varilna tehnika*, 42 (**1993**) 3, 88-93
- ⁴ Welded Steel Tanks for Oil Storage, ANSI/API Std. 650, Ninth Edition, July 1993, Addendum 1, December **1994**