OD GLADKEGA CILINDRIČNEGA NATEZNEGA PREIZKUŠANCA DO PREIZKUŠANCA Z OBODNO ZAREZO OZIROMA Z RAZPOKO V KORENU OBODNE ZAREZE

FROM SMOOTH- TO CIRCUMFERENTIALLY NOTCHED ROUND-BAR AND FINALLY TO CIRCUMFERENTIALLY NOTCHED AND PRECRACKED ROUND-BAR TENSILE SPECIMEN

Boris Ule

Pijava Gorica, Zagoriška 13, 1291 Škofljica, Slovenija boris.ule@guest.arnes.si

Prejem rokopisa – received: 2005-10-17; sprejem za objavo – accepted for publication: 2005-11-10

The importance of smooth round-bar tensile specimen is described, particularly considering the limit of uniform elongation, i. e. the strain hardening exponent, and fracture ductility whereas nominal elongation has to be taken as less important since it is not the material property only. The stress distribution at the neck of the smooth round-bar specimen and Cockcroft-Latham strain energy density criterion for estimation of cold bulk deformability of metallic materials, as well as the Hahn-Rosenfield correlation for calculation of plane strain fracture toughness of metals, both obtained from tensile testing data of one single smooth round-bar specimen, are also described.

The absorbed specific fracture energy due to Gillemot is presented to illustrate the application of energy criterion for determining the fracture properties by notched round-bar specimens. The notch tensile test, notch strength and notch-strength ratio are discused too. With the help of stress concentration factors, which are associated with the bluntness of the notch, correction factors for the fracture toughness calculations are described in order to derive the corrected fracture toughness. However, the existence of a limiting notch root radius is critically discussed.

A method for measuring the plain strain fracture toughness of metallic materials by means of cylindrical specimens in tension with axi-symmetrical ring shape crack is discussed. Owing to the fact that the crack tip of such a specimen is closer to ideal plane strain state, the K_{Ic} of value measured is effective and reliable. This review deals with the problems of crack prefabrication, experimental technique, data processing and requirements for specimen dimensions.

Keywords: smooth round-bar specimen, circumferentially notched round-bar specimen, circumferentially notched and precracked round-bar specimen, mechanical properties, absorbed specific fracture energy, notch root radius, notch strength, stress concentration factor, plane strain fracture toughness K_{Ic} .

Opisan je pomen gladkega cilindričnega preizkušanca pri nateznem preizkušanju, zlasti še meje enakomernega raztezka, to je eksponenta deformacijskega utrjevanja ter lomne duktilnosti, medtem ko je treba jemati nominalni raztezek za manj pomembnega, ker ni lastnost le materiala. Obravnavana je porazdelitev napetosti v vratu cilindričnega preizkušanca ter Cockcroft-Lathamov kriterij gostote deformacijske energije za oceno masivne preobli-kovalnosti kovinskih materialov v hladnem, pa tudi Hahn-Rosenfieldova korelacija za računanje lomne žilavosti pri ravninskem deformacijskem stanju, oboje iz rezultatov nateznega preizkusa z enim samim cilindričnim preizkušancem.

Ilustrirana je uporaba absorbirane specifične energije loma po Gillemontu kot energijski kriterij za določitev lomnih lastnosti s cilindričnimi preizkušanci z obodno zarezo. Obravnavan je natezni preizkus s preizkušancem z obodno zarezo, trdnost ob zarezi ter zarezno trdnostno razmerje. S faktorji koncentracije napetosti, povezanih s topostjo zareze, so opisani korekcijski faktorji za izračunavanje lomne žilavosti za ugotovljanje prave lomne žilavosti. Seveda pa je bil kritično obdelan tudi mejni korenski polmer zareze.

Obravnavana je metoda merjenja lomne žilavosti pri ravninskem deformacijskem stanju kovinskih materialov s cilindričnimi nateznimi preizkušanci z osnosimetrično obodno razpoko v korenu zareze. Zaradi dejstva, da je konica razpoke takšnega preizkušanca blizu idealnega ravninskodeformacijskega stanja, je izmerjena dejanska in zanesljiva vrednost K_{lc} . V tem pregledu so obravnavani problemi izdelave razpoke, eksperimentalne tehnike, obdelave podatkov ter priporočil, ki se nanašajo na velikost preizkušanca.

Ključne besede: gladek cilindrični preizkušanec, cilindrični preizkušanec z obodno zarezo, cilindrični preizkušanec z obodno zarezo in razpoko v korenu, mehanske lastnosti, absorbirana specifična energija loma, korenski polmer zareze, trdnost ob zarezi, faktor koncentracije napetosti, lomna žilavost pri ravninskem deformacijskem stanju $K_{\rm lc}$.

1 GLADEK CILINDRIČNI NATEZNI PREIZKUŠANEC

1.1 Uvod z definicijami osnovnih pojmov

Temeljne mehanske lastnosti kovinskih materialov so tiste, ki so osnova za nelinearno računalniško simulacijo konstrukcij glede na mejna stanja. Ugotavljamo jih z nateznim preizkusom, pri katerem z enakomerno naraščajočo natezno silo obremenjujemo gladek preizkušanec cilindrične oblike vse do porušitve. Odvisnost med natezno obremenitvijo in deformacijo preizkušanca se pri nateznem preizkusu zvezno riše v inženirskem diagramu napetost-raztezek, prikazanem na **sliki 1**. S polno črto prikazano odvisnost v diagramu lahko opredelimo s štirimi parametri: s togostjo (modul elastičnosti *E*), koncem Hookove premice (meja proporcionalnosti),

Slika 1: Inženirski (to je nominalni) in pravi odnos napetost–raztezek Figure 1: Engineering (i.e. nominal) and true stress–strain relationship

z obliko krivulje (en sam eksponent deformacijskega utrjevanja v najenostavnejšem primeru) ter njenim koncem (lomna duktilnost)¹. Pri nateznem preizkusu pa navadno merimo napetost tečenja R_{p 0.2} (R_{eH} oz. R_{eL} pri izrazitem plastičnem platoju), ki se le nekoliko razlikuje od meje proporcionalnosti $R_{\rm e}$, to je od konca Hookove premice, napetost R_m ali natezno trdnost, to je največjo pri nateznem preizkusu duktilnega materiala, izmerjeno silo F_m, deljeno s ploščino začetnega prereza cilindričnega preizkušanca S_0 , torej $R_m = F_m/S_0$, zoženje pri porušitvi ali kontrakcijo Z_f , definirano kot $Z_f = (S_0 - S_f)/S_0$, pri čemer je S_f ploščina prereza zoženega preizkušanca na mestu porušitve, ter inženirski raztezek pri porušitvi A_{5f}, definiran kot $A_{5f} = (L_f - L_0)/L_0$, pri čemer je L_0 začetna, L_f pa končna merilna dolžina, to je merilna dolžina preizkušanca ob porušitvi, indeks 5 pri A-ju pa označuje, da je začetna merilna dolžina L₀ petkratnik premera cilindričnega preizkušanca D₀. Pogosto so v rabi tudi preizkušanci z daljšo merilno dolžino, na primer desetkratnikom začetnega premera D₀, inženirski raztezek pri porušitvi pa tedaj označimo z A_{10f} . Sicer pa je inženirski ali nominalni raztezek A v območju homogene deformacije, to je do pojavljanja plastične nestabilnosti, definiran kot:

$$A = \frac{L - L_0}{L_0} \tag{1}$$

pri čemer je *L* dolžina obremenjenega nateznega preizkušanca.

Nominalna napetost R_m pomeni pri žilavih materialih silo plastične nestabilnosti v nategu, deljeno s ploščino začetnega, in ne s ploščino dejanskega prereza obremenjenega cilindričnega preizkušanca, torej $R_m = F_m/S_0$. Za inženirsko prakso pa je tako definirana trdnost koristna, saj omogoča dimenzioniranje strojnih delov, to je izračunavanje dopustnih napetosti, pri katerih še ne pride do znatne spremembe nosilnega prereza (čeprav v ta namen praviloma uporabljamo napetost tečenja). O kakšni podobni koristi pa ne moremo govoriti, ko gre za inženirski ali nominalni raztezek pri porušitvi, saj je ta odvisen od merilne dolžine in zato ni lastnost le materiala. Sestavljen je namreč iz največjega enakomernega raztezka A_m , ki ustreza pojavljanju plastične nestabilnosti in zelo spremenljivega raztezka zaradi lokalnega zoženja, to je nastajanja vratu na cilindričnem preizkušancu. Kot mera lomne duktilnosti je zato inženirski raztezek neprimeren.

V diagramu na **sliki 1** je črtkano prikazana tudi odvisnost pravega raztezka ε od prave napetosti σ . Prava napetost je sila natezanja *F*, deljena z dejansko ploščino prereza cilindričnega preizkušanca *S*, torej $\sigma = F/S$. Dejanska ploščina prereza preizkušanca se zaradi plastične deformacije pri natezanju zmanjšuje, nazadnje z intenzivnim lokalnim zoženjem. Nominalno ali inženirsko napetost, računano na ploščino začetnega prereza cilindričnega preizkušanca *S*₀, bomo zato označili z σ_{nom} , torej $\sigma_{nom} = F/S_0$. Največja inženirska napetost, to je napetost pri doseganju plastične nestabilnosti $\sigma_{nom,m}$, je seveda kar trdnost materiala R_m . Pravo in inženirsko (nominalno) napetost povezuje odvisnost:

$$\sigma = \frac{F}{S} = \frac{F}{S_0} \cdot \frac{S_0}{S} = \sigma_{\text{nom}} \frac{S_0}{S}$$
(2)

Ker pa je plastična deformacija strižni proces, ki ne vključuje spremembe volumna, je vse do pojavljanja plastične nestabilnosti:

$$\frac{S_0}{S} = \frac{L}{L_0} = A + 1$$
(3)

pri čemer smo upoštevali definicijo inženirskega (nominalnega) raztezka obremenjenega preizkušanca (1). Iz (3) sedaj izhaja:

$$\sigma = \sigma_{\text{nom}} \left(A + 1 \right) \tag{4}$$

Poudariti kaže, da izpeljava enačbe (4) predpostavlja ne le konstantnost volumna pri plastični deformaciji, pač pa tudi homogeno porazdelitev deformacije vzdolž merilne dolžine nateznega preizkušanca². Zato enačba (4) velja le do pojavljanja plastične nestabilnosti, to je do pojavljanja vratu na nateznem preizkušancu.

Nasprotno od nominalnega, to je inženirskega, raztezka A je Ludwik³ definiral pravi raztezek ε prirastkovno:

$$d\varepsilon = \frac{dL}{L} = -\frac{dS}{S}$$
(5)

kjer sta, kot že rečeno, L oziroma S merilna dolžina oziroma ploščina prereza natezno obremenjenega cilindričnega preizkušanca. Identiteta (5) izhaja iz ugotovitve, da je plastična deformacija strižni proces, ki ne vključuje spremembe volumna. Za pravi raztezek ε dobimo:

$$\varepsilon = -\int_{S_0}^{S} \frac{\mathrm{d}S}{S} = \ln \frac{S_0}{S} \tag{6}$$

imenujemo pa ga tudi logaritemski raztezek.

Iz enačb (3) in (6) izhaja zveza med nominalnim, to je inženirskim, raztezkom in pravim raztezkom, ki zaradi

že navedenih razlogov velja le v območju homogene deformacije:

$$\varepsilon = \ln \left(A + 1 \right) \tag{7}$$

Pri obremenitvah, ki presegajo maksimalno silo F_m , pa lahko pravi raztezek utemeljimo z merjenjem ploščine prereza oziroma premera D obremenjenega nateznega preizkušanca na zoženem mestu². Potem iz (6) izhaja:

$$\varepsilon = \ln \frac{S_0}{S} = 2 \ln \frac{D}{D_0} \tag{8}$$

Zanimiv je pravi lomni raztezek ob porušitvi ali lomna duktilnost ε_f , ki je s kontrakcijo Z_f v enostavni zvezi:

$$\varepsilon_{\rm f} = \ln \frac{S_0}{S_{\rm f}} = \ln \frac{1}{1 - Z_{\rm f}} \tag{9}$$

uporabljamo pa ga kot merilo za oceno tako lomne žilavosti kot tudi preoblikovalnosti kovinskih materialov. Za oceno preoblikovalnosti pa je važen še največji pravi enakomerni raztezek ε_m , ki pomeni mejo homogene deformacije pri natezenju. Definiramo ga kot:

$$\varepsilon_{\rm m} = \ln \frac{S_0}{S_{\rm m}} \tag{10}$$

Iz enačbe (3) izhaja za največji inženirski enakomerni raztezek A_m izraz:

$$A_{\rm m} + 1 = \frac{S_0}{S_{\rm m}}$$

iz katerega po logaritmiranju dobimo zvezo med največjim pravim in največjim inženirskim enakomernim raztezkom:

$$\varepsilon_{\rm m} = \ln \left(A_{\rm m} + 1 \right) \tag{11}$$

Največjo inženirsko natezno napetost $R_{\rm m} = F_{\rm m}/S_0$, to je natezno trdnost, ter njej ustrezno pravo natezno napetost $\sigma_{\rm m} = F_{\rm m}/S_{\rm m}$ lahko medsebojno povežemo z odpravljanjem sile $F_{\rm m}$. Dobimo:

$$\sigma_{\rm m} = R_{\rm m} \cdot \frac{S_0}{S_{\rm m}} \tag{12}$$

ter z upoštevanjem (10) še:

$$\sigma_{\rm m} = R_{\rm m} \exp \varepsilon_{\rm m} \tag{13}$$

Nič še ni bilo rečeno o tem, kako izmerimo največji enakomerni inženirski raztezek A_m . Ker ta raztezek ustreza doseženi maksimalni sili F_m pri natezanju, to je pogoju dF/dA = 0, ga enostavno odčitamo s krivulje napetost-raztezek v točki, v kateri je tangenta na krivuljo horizontalna. Če pa je krivulja napetost-raztezek v tem delu zelo sploščena je takšno določevanje največjega inženirskega enakomernega raztezka dokaj nezanesljivo. V takšnem primeru raje uporabimo preizkušanec z dvema različnima začetnima merilnima dolžininama L_{0a} in L_{0b} , prikazan na **sliki 2**. Naj je $L_{0a} > L_{0b} > L_k$, pri čemer z L_k mislimo na tisti del merilne dolžine L_{0b} , na kateri se po končanem enakomernem raztezanju prične oblikovati

Slika 2: K razlagi merjenja mejnega enakomernega raztezka z dvema različnima merilnima dolžinama

Figure 2: To the explanation of the limit uniform elongation measuring with two different gauge lengths

vrat preizkušanca. Od tedaj dalje se preizkušanec podaljšuje le še zaradi lokalnega zoženja na mestu vratu. Potem merilni dolžini preizkušanca pri porušitvi L_{af} oziroma L_{bf} zapišemo tako, da začetnima dolžinama L_{0a} oziroma L_{0b} prištejemo ustrezni enakomerni podaljšanji do pojavljanja plastične nestabilnosti, namreč $L_{0a}A_m$ oziroma $L_{0b}A_m$, ter v obeh primerih še razdaljo L_k , to je podaljšanje preizkušanca zaradi tvorjenja vratu, ki je neodvisna od izbire *a* oziroma *b*. Torej je $L_{af} = L_{0a}$ (1 + A_m) + L_k ter prav tako $L_{bf} = L_{0b}$ (1 + A_m) + L_k . Iz obeh zadnjih izrazov z eliminiranjem L_k dobimo za največji inženirski enakomerni raztezek:

$$A_{\rm m} = \frac{(L_{\rm af} - L_{\rm 0a}) - (L_{\rm bf} - L_{\rm 0b})}{L_{\rm 0a} - L_{\rm 0b}}$$
(14)

oziroma

$$A_{\rm m} = \frac{L_{0a} \frac{(L_{\rm af} - L_{0a})}{L_{0a}} - L_{0b} \frac{(L_{\rm bf} - L_{0b})}{L_{0b}}}{L_{0b}}$$
(15)

Ker pa sta dosežena inženirska raztezka pri porušitvi A_{af} in A_{bf} definirana kot $A_{af} = (L_{af} - L_{0a})/L_{0a}$ in $A_{bf} = (L_{bf} - L_{0b})/L_{0b}$ in ker je tudi $L_{0a} = aD_0$ oziroma $L_{0b} = bD_0$, pri čemer je D_0 začetni premer nateznega preizkušanca, iz (15) izhaja:

$$A_{\rm m} = \frac{aA_{\rm af} - bA_{\rm bf}}{a - b} \tag{16}$$

V primeru, da uporabimo merilni dolžini $5D_0$ in $10D_0$, katerima ustrezata inženirska raztezka pri porušitvi A_{5f} in A_{10f} , bo največji inženirski enakomerni raztezek:

$$A_{\rm m} = 2A_{10\rm f} - A_{5\rm f} \tag{17}$$

Z uporabo formule (11) pa lahko izrazimo še največji pravi enakomerni raztezek, tokrat kot:

$$\varepsilon_{\rm m} = \ln \left(2A_{10\rm f} - A_{5\rm f} + 1 \right) \tag{18}$$

1.2 Plastična nestabilnost pri natezanju

Kovinski materiali se deformacijsko utrujejo, kar pomeni, da se s povečevanjem deformacije povečuje njihova nosilnost. Krivuljo tečenja $\sigma - \varepsilon$ mnogih kovinskih materialov v območju enakomernega raztezanja lahko zapišemo z različnimi konstitutivnimi enačbami ³⁻⁶. Najbolj pogosto rabljena je Hollomonova potenčna enačba⁴, pogosto citirana tudi kot Ludwik-Hollomonova enačba:

$$\sigma = K\varepsilon^n \tag{19}$$

V enačbi (19) je n eksponent deformacijskega utrjevanja (pri večini kovinskih materialov je n med 0,1 in 0,5), K pa je trdnostna konstanta (v megapaskalih).

Ob tem kaže poudariti, da hitrost deformacijskega utrjevanja $d\sigma/d\varepsilon$ ni identična eksponentu deformacijskega utrjevanja. Iz (19) namreč izhaja:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\varepsilon} = Kn\varepsilon^{n-1} = \frac{n}{\varepsilon}K\varepsilon^n = n\frac{\sigma}{\varepsilon} \tag{20}$$

Kot rečeno, enačba (19) je le ena od najpogosteje uporabljanih konstitutivnih enačb, zato na njej, pa tudi na njenih izpeljankah, ni nič temeljnega. Ima pa veliko praktično vrednost.

Že omenjenemu deformacijskemu utrjevanju pri natezanju, ki ima za posledico povečevanje nosilnosti preizkušanca, nasprotuje zvezno zmanjševanje nosilnega prereza raztezajočega se preizkušanca. Do pojavljanja vratu, to je pojavljanja lokalizirane plastične deformacije, pride pri maksimalni obremenitvi F_m , ko naraščajoča napetost zaradi manjšanja prečnega prereza preizkušanca preseže z deformacijskim utrjevanjem povzročeno povečanje nosilnosti. Iz pogoja nestabilnosti dF = 0 dobimo z enačbo $F = \sigma S$ pogoj $\sigma dS + S d\sigma = 0$, od kođer z upoštevanjem konstantnosti volumna izhaja za točko plastične nestabilnosti pri natezanju:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\varepsilon} = \sigma \tag{21}$$

Z vstavljanjem kriterija (21) v enačbo (20) ugotovimo, da je eksponent deformacijskega utrjevanja n v enačbi (19) numerično enak doseženemu pravemu raztezku ob pojavljanju plastične nestabilnosti ε_m :

$$\varepsilon_{\rm m} = n$$
 (22)

oziroma z upoštevanjem enačbe (11):

$$n = \ln \left(A_{\rm m} + 1\right) \tag{23}$$

Eksponent deformacijskega utrjevanja *n*, ki pomeni največji pravi enakomerni raztezek, to je mejo dosežene homogene deformacije pri natezanju, se lahko uporablja kot eden od kriterijev preoblikovalnosti v hladnem, saj pomembno vpliva na obliko krivulje tečenja (19). Od oblike te krivulje – tako smo imenovali odvisnost med pravo napetostjo in pravim raztezkom – pa je odvisno preoblikovalno delo na enoto volumna. Drug pomemben kriterij preoblikovalnosti v hladnem pa je seveda lomna duktilnost ε_f , to je dosežena lokalna deformacija pri natezanju, neposredno pred porušitvijo.

Trdnostno konstanto *K* v potenčnem zakonu (19) lahko sedaj, ko poznamo eksponent *n*, določimo zelo enostavno. Ko natezna sila *F* in z njo pravi enakomerni raztezek ε dosežeta svoji največji vrednosti *F*_m in ε_m , dobimo iz potenčnega zakona za pravo napetost vrednost $\sigma = K\varepsilon_m^n$, zaradi (4) pa tudi $\sigma = R_m (A_m + 1)$. Potem je:

$$K = R_{\rm m} \left(\frac{e}{n}\right)^n$$
 e = 2,71828... (24)

in očitno oba parametra potenčnega zakona (19), namreč konstanto K in eksponent n, določimo preprosto iz inženirskega diagrama napetost-raztezek, kot ga dobimo pri nateznem preizkusu. Poznati moramo namreč le trdnost R_m in največji inženirski enakomerni raztezek A_m , ki ga na primer lahko izračunamo z enačbo (18). Ludwik-Hollomonovo potenčno funkcijo (19), prikazano grafično kot krivuljo tečenja, uporabljamo za napovedovanje preoblikovalnosti kovinskih materialov. Pogosteje sicer takšno krivuljo dobimo iz rezultatov tlačnega preizkusa, pri katerem dosega homogena deformacija znatno večje vrednosti kot pa pri natezanju. V tem pregledu pa smo želeli prikazati, kako jo lahko dobimo iz rezultatov nateznega preizkusa.

Melander⁷ navaja v svojem pregledu, ki ga tu na kratko povzemamo, da izpolnjevanje pogoja (22) ne zadošča popolnoma za nastajanje vratu na nateznem preizkušancu. Natančnejše analize plastične nestabilnosti pri enoosnem natezanju, ki sta jih opravila Miles in Hutchinson^{8,9}, kažejo, da se v primeru veljavnosti potenčnega zakona (19) prvi sledovi vratu na cilindričnem nateznem preizkušancu pričnejo pojavljati pri raztezku:

$$\varepsilon_{\rm m} = n \left[1 + \frac{\pi^2}{8} \left(\frac{r_{\rm m}}{L_{\rm m}} \right)^2 + \frac{\pi^4}{192} \left(\frac{r_{\rm m}}{L_{\rm m}} \right)^4 \frac{G}{\sigma_{\rm m}} \right] \quad (25)$$

pri čemer sta r_m in L_m polmer in merilna dolžina cilindričnega nateznega preizkušanca pri maksimalni obremenitvi, G je strižni modul, σ_m pa prava napetost pri maksimalni obremenitvi. Za konstrukcijska jekla je $G/\sigma_m \approx 100$, zato se bo pri cilindričnem nateznem preizkušancu, ki je na primer desetkrat daljši od svojega premera, pričel tvoriti vrat pri raztezku $\varepsilon_m \approx 1,02 n$. Pri jeklu torej kljub vsemu skoraj tako, kot to napoveduje enačba (22).

E. W. Hart¹⁰, ki je raziskal razvoj majhnih motenj prečnega prereza nateznega preizkušanca med njegovim raztezanjem, je leta 1967 objavil teorijo, po kateri je pri kovinskih materialih, ki so občutljivi za hitrost deformacije, pojavljanje vratu zakasnjeno. S konstitutivno enačbo:

$$\sigma = K \varepsilon^n \dot{\varepsilon}^m \tag{26}$$

pri čemer je $\dot{\varepsilon}$ hitrost deformacije, *m* pa konstanta, je za mejo stabilnosti pri natezanju dobil:

$$\varepsilon_{\rm m} = \frac{n}{1-m} \tag{27}$$

Vrednost eksponenta m v enačbi (26) je navadno manjša od 0,01, tako da je enačba (27) blizu enačbi (22). Hartova teorija je bila kasneje dopolnjena z upoštevanjem še drugih motenj, ne le motenj prečnega prereza¹¹. Analize so pokazale dokajšnjo podcenjenje obsega stabilne deformacije pri Hartovih izpeljavah. Če so nasprotno od linearnega opisa motenj uporabljene nelinearne teorije^{12,13}, se izkaže, da deformacija cilindričnega preizkušanca z začetno nehomogenostjo sicer ostane stabilna, čeprav ne popolnoma homogena, tudi če je izpolnjen Hartov pogoj. Dejansko pride do začetka pojavljanja nekoliko difuznega vratu blizu maksimalne obremenitve, vendar se vrat razvija počasi vse do njegovega morebitnega hitrega izoblikovanja. Deformacijsko stanje pri nastajanju vratu pa je bilo opisano največkrat le za osrednji del vratu^{12,14} in le redko za celotni natezni preizkušanec¹⁵.

1.3 Kriteriji preoblikovalnosti

Potenčna funkcija (19) je pomembna za tehnologijo preoblikovanja v hladnem, kjer veljajo krivulje tečenja za temeljne karakteristike kovinskih materialov. Za tehniko preoblikovanja pa ni pomembna le oblika krivulje tečenja, pač pa tudi njen konec, ki se sklada s porušitvijo nateznega preizkušanca. Krivulja tečenja pri enoosnem nateznem preizkusu se prične spreminjati s pojavljanjem vratu na nateznem preizkušancu in posledično z nastajanjem triosnega stanja napetosti v vratu.

Že Siebel¹⁶ je ugotovil, da je pojavljanje razpok pri preoblikovanju kovinskih materialov povezano z induciranimi nateznimi napetostmi, celo pri procesih, kakršno je kovanje, ki je prvenstveno tlačni postopek. Znano je na primer, da postane kovinski material "mehak" zaradi dvoosnega tlačnega stanja napetosti pri vlečenju žice skozi votlico, kjer so zato dosežene večje končne deformacije kot pa pri enoosnem nateznem preizkusu¹⁷ (pri katerem je lahko dosežena le homo-gena deformacija ε_m).

Pugh in Green¹⁸ sta na primer dokazala, da superpozicija hidrostatičnega tlaka v procesu ekstruzije močno izboljša preoblikovalnost duktilnih materialov in da se pod temi pogoji lahko preoblikujejo celo materiali, ki sicer veljajo za krhke. Nasprotno pa kovinski material postane "trd in hkrati povsem krhek" pri čistem hidrostatičnem nategu, kjer je dosežena kohezijska trdnost $R_{\rm C}$ pri lomu s cepljenjem. Hidrostatične komponente nateznega triosnega stanja napetosti vplivajo torej na prehod v krhko stanje, podobno kot nizke temperature in visoke hitrosti raztezanja pri enoosnem nateznem preizkusu. Vsi ti vplivi na prehod v krhko stanje se seveda lahko neugodno seštevajo¹.

1.3.1 Cockcroft-Lathamov kriterij

Latham¹⁹ je leta 1963 opazil, da do porušitve pri postopkih preoblikovanja kovinskih materialov prihaja v območju maksimalnih nateznih napetosti. Pri nateznem preizkusu, na primer, je to v vzdolžni osi nateznega preizkušanca na zoženem mestu. Res je, da v duktilnih kovinskih materialih tam prično nastajati pore, ki se v zadnji stopnji nateznega preizkusa pričnejo zlivati v mikrorazpoke, katerih napredovanje proti obodu končno privede do porušitve nateznega preizkušanca (s pojavom strižne ustnice na robu zaradi nastajajočega ravninskega napetostnega stanja v obodnem ligamentu).

Pri cilindričnem nateznem preizkušancu lahko napetosti v najožjem delu vratu preizkušanca izračunamo z različnimi približki17, 20-26. Lahko jih obravnavamo kot vsoto dveh delov. Prvi je ekvivalentna napetost, ki je enaka delujoči napetosti tečenja in jo lahko imamo za konstantno v celotnem prerezu. Drugi del pa je hidrostatično natezanje, ki se spreminja od nič na obodu preizkušanca do največje vrednosti v osi preizkušanca. Cockcroft²⁷ ter Cockcroft in Latham²⁸ sta pokazala, da za oceno preoblikovalnosti kovinskih materialov ni primerno uporabljati splošnega kriterija, utemeljenega na celotnem plastičnem delu na enoto volumna do porušitve pri natezanju, če je takšen kriterij utemeljen z delujočo napetostjo tečenja (current vield stress), na katero nasprotno od maksimalne natezne napetosti v osi preizkušanca (peak stress) - oblika vratu nateznega preizkušanca ne vpliva. Posledično bi torej, pri uporabi takšnega kriterija, oblika vratu ne imela vpliva na lomno duktilnost, kar pa je v nasprotju z eksperimentalnimi ugotovitvami28. Omenjena raziskovalca27,28 sta zato predložila spremenjeno obliko splošnega kriterija, namreč Cockcroft-Lathamov kriterij utemeljen z gostoto natezne deformacijske energije, pri čemer sta upoštevala maksimalno natezno napetost v osi nateznega preizkušanca, kjer pri natezanju pride do začetkov porušitve z nukleiranjem mikropor. V literaturi je navedenih še več drugih kriterijev za oceno preoblikovalnosti kovinskih materialov. Modificirano obliko Cockcroft-Lathamovega kriterija, ki pa vključuje tudi člen s hidrostatično napetostjo, je predložil Brozo s sodelavci²⁹. Druge tovrstne kriterije so predložili še Oyane³⁰, Clift³¹, Hoffmanner³² in Osakada³³, spisek pa s tem še zdaleč ni izčrpan. Omenjeni kriteriji so bili kasneje uspešno uporabljeni pri raziskavah preoblikovalnosti kovinskih materialov v hladnem³⁴⁻³⁶.

Od naštetih kriterijev si bomo pobliže ogledali le Cockcroft-Lathamovega, ki se zdi posebej zanimiv s stališča uporabe gladkega cilindričnega nateznega preizkušanca. Upoštevajoč posplošeno von Miesesovo definicijo ekvivalentnih napetosti in deformacij, lahko Cockcroft-Lathamov kriterij zapišemo v obliki:

$$\int_{0}^{\overline{e}_{f}} \overline{\sigma} \left(\frac{\sigma^{*}}{\overline{\sigma}} \right) d\overline{\varepsilon} = W$$
(28)

Do porušitve pri natezanju pa pride, ko integral (28) doseže neko vrednost W, ki je značilna konstanta kovinskega materiala pri določeni temperaturi, hitrosti deformacije itd. Pri tem je $\overline{\sigma}$ ekvivalenta napetost, $\overline{\epsilon}$ je ekvivalentna deformacija, σ^* je največja natezna napetost, ($\sigma^*/\overline{\sigma}$) pa je brezdimenzijski faktor koncentracije napetosti, ki zajema vpliv največje natezne napetosti v vratu. Tako ima konstanta W dimenzijo dela na enoto volumna (N/m² = N m/m³ = J/m³). Zgornja integracijska meja ε_f pomeni ekvivalentno lomno duktilnost. Če ne deluje nobena natezna napetost, pač pa le tlačna, je $\sigma^* =$ 0 in do porušitve naj sploh ne bi prišlo²⁸. Geometrija vratu na nateznem preizkušancu in porazdelitev aksialne natezne napetosti σ_z je prikazana na **sliki 3**.

V poenostavljeni, za računanje primerni obliki zapišemo integral (28) kot:

$$\int_{0}^{\varepsilon_{f}} \sigma^{*} \, \mathrm{d}\overline{\varepsilon} = W \tag{29}$$

pri čemer lahko korekcijo zaradi vratu in projekcijo napetosti σ^* določimo na že znane načine^{17, 20-26}. Dokaj običajna je uporaba enačb po Bridgamnu¹⁷, v tem pregledu pa bomo raje uporabili še enostavnejši približek po Davidenkovu in Spiridonovi²⁰, kot je to naredil že Wright s sodelavci³⁴. Potem je porazdelitev napetosti v najožjem delu vratu nateznega preizkušanca podana z enačbama:

$$\sigma_{\rm av} = \overline{\sigma} \left(1 + \frac{R}{2\rho} \right) \tag{30}$$

$$\sigma^* = \overline{\sigma} \left(1 + \frac{R}{4\rho} \right) \tag{31}$$

pri čemer je σ_{av} povprečna napetost v vratu preizkušanca (breme deljeno s ploščino prereza vratu na najožjem mestu), *R* je polmer prečnega prereza vratu na najožjem mestu, z ρ pa smo označili krivinski polmer profila vratu. Z eliminiranjem $\overline{\sigma}$ v enačbah (30) in (31) lahko izrazimo maksimalno aksialno napetost v najožjem delu vratu nateznega preizkušanca s povprečno natezno napetostjo na tem mestu, računajoč tudi z geometrijo vratu. Naša naloga bo torej, da poleg že znanih geometrijskih karakteristik nateznega preizkušanca po porušitvi izmerimo tudi polmer pritisnjenega kroga v vratu preizkušanca. Idealno bi seveda bilo, če bi ta polmer lahko zvezno merili med samim nateznim preizkusom, vendar tega natezni trgalni stroji navadno ne omogočajo.

Slika 3: Geometrija vratu in porazdelitev aksialne natezne napetosti Figure 3: Geometry of the necked region and distribution of axial tensile stress

Upoštevaje utrjevanje kovinskih materialov zapišemo potenčno funkcijo (19) s posplošenimi napetostmi in deformacijami v obliki:

$$\overline{\sigma} = K\overline{\varepsilon}^n \tag{32}$$

vrednosti za *K* in *n* pa določimo na primer tako, da v enačbo (32) zapored substituiramo vrednosti, ki veljajo za napetost tečenja $R_{p0,2}$ pri enoosnem nateznem preizkusu ($\overline{\sigma} = R_{p0,2}$ pri $\overline{\epsilon} = 0,002$) ter za porušitev preizkušanca³⁴, ko napetost $\overline{\sigma}$ lahko enostavno izračunamo z enačbo (30), upoštevaje polmer pritisnjenega kroga ρ v vratu porušenega nateznega preizkušanca, in povprečno napetost σ_{av} v najožjem delu vratu v trenutku porušitve. *K* in *n* pa lahko izračunamo tudi iz pogoja plastične nestabilnosti ob pojavljanju vratu, namreč kar z enačbama (22) in (24).

Še beseda o zgornji integracijski meji pri (29). Videli bomo, da za natezni preizkus v splošnem velja:

$$\overline{\varepsilon} = \varepsilon_1 = \ln\left(\frac{S_0}{S}\right) \tag{33}$$

kot to izhaja iz poenostavljenega izraza za ekvivalentno deformacijo, ki sta ga našla Hosford in Caddell³⁷ in ki ima obliko:

$$\overline{\varepsilon} = \sqrt{\frac{2}{3}(\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2)}$$
(34)

pri čemer smo z epsiloni označili glavne deformacije. Za deformacijo pri nateznem preizkusu velja:

$$\varepsilon_1 = \varepsilon_{\max} \text{ in } \varepsilon_2 = \varepsilon_3 \neq \varepsilon_1$$
 (35)

zaradi konstantnosti volumna pa je: $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0$, iz česar izhaja: $\varepsilon_1 + 2\varepsilon_2 = 0$.

Z enačbo (34) sedaj dobimo:

$$\overline{\varepsilon} = \varepsilon_1 = \varepsilon_{\max} \tag{36}$$

od koder sledi za zgornjo integracijsko mejo $\overline{\epsilon}_{f}$:

$$\overline{\varepsilon}_{\rm f} = \varepsilon_1 = \ln \left(S_0 / S_{\rm f} \right) \tag{37}$$

torej izraz, ki ga že poznamo, saj smo ga uporabili za kalibriranje potenčne funkcije (32).

Odvisnost $\sigma^* vs.$ oziroma zaradi (33) kar enostavno σ^* vs. ε , lahko sedaj določimo z enačbama (30) in (31) ob privzetku, da se prične pojavljati vrat pri natezni trdnosti R_m , ko σ_{av} doseže σ_m in ε doseže ε_m . Privzamemo pa še, da v odvisnosti od deformacije ε maksimalna natezna napetost σ^* narašča vse od pojavljanja vratu pa do loma preizkušanca približno linearno, kot je to prikazano v diagramu na **sliki 4**. O tem privzetku bo sicer nekaj govora še kasneje. Celotna šrafirana površina pod krivuljo v tem diagramu pomeni delo aksialne natezne napetosti do porušitve, torej vrednost *W* integrala (29). Omenjeno površino lahko razdelima na dva dela, kar pomeni, da integral (29) zapišemo kot:

$$W = \int_{0}^{\varepsilon_{\rm m}} \sigma d\varepsilon + \int_{\varepsilon_{\rm m}}^{\varepsilon_{\rm f}} \sigma^* d\varepsilon$$
(38)

MATERIALI IN TEHNOLOGIJE 39 (2005) 6

Slika 4: Ekvivalentna napetost in maksimalna aksialna napetost v odvisnosti od ekvivalentne deformacije pri natezanju (shematsko) Figure 4: Effective stress, and peak axial stress, versus effective strain at tensile testing (schematically)

Po vstavljanju znane funkcijske odvisnosti σ vs. ε v prvega od zgornjih integralov in po uporabi trapezne formule za zapis drugega integrala v izrazu (38), za W končno dobimo:

$$W = \frac{k}{n+1}\varepsilon_{\rm m}^{n+1} + \frac{\sigma_{\rm m} + \sigma_{\rm f}^*}{2}(\varepsilon_{\rm f} - \varepsilon_{\rm m})$$
(39)

Cockcroft-Lathamov kriterij (29) je pomemben za oceno preoblikovalnosti kovinskih materialov, saj je Kuhn s sodelavci³⁸ ugotovil, da je ta kriterij mogoče teoretično povezati s tistim, ki se sicer uporablja za napovedovanje pojavljanja površinskih razpok pri tlačenju in ki ima obliko:

$$\varepsilon_1 + \frac{\varepsilon_2}{2} = a \tag{40}$$

pri čemer je ε_1 največja glavna natezna deformacija na površini tlačenega preizkušanca, ε_2 je največja glavna tlačna deformacija na površini, *a* pa je značilna konstanta materiala.

1.4 Absorbirana specifična energija loma (ASFE) in Gillemotov kriterij

V prejšnjem poglavju smo opisali uporabo Cockcroft-Lathamovega kriterija za oceno preoblikovalnega dela z gladkim cilindričnim nateznim preizkušancem. Podoben energijski kriterij je za oceno žilavosti kovinskih materialov, neodvisno od že omenjenih raziskovalcev preoblikovalnosti²⁷⁻³³, v šestdesetih letih prejšnjega stoletja predložil L. Gillemot³⁹⁻⁴⁰, imenoval pa ga je absorbirana specifična energija loma (The Absorbed Specific Fracture Energy – ASFE). ASFE naj bi bila deformacijska energija na volumensko enoto materiala, potrebna za iniciiranje mikrorazpoke. Izhaja iz obravnave absorbirane energije v infinitezimalno majhnem volumskem elementu ob konici razpoke ali okoli prelomne površine nateznega preizkušanca, kot je to shematsko prikazano na **sliki 5**. Specifična vrednost te energije je ASFE⁴¹. Merjenje absorbirane energije v infinitezimalno majhnem volumnu materiala seveda ni možno, vendar ga lahko z zadovoljivo natančnostjo aproksimiramo z izračunavanjem za lom potrebne energije preko celotne prelomne površine gladkega cilindričnega preizkušanca. S tega zornega kota so gladki cilindrični natezni preizkušanci sploh najprimernejši, saj iniciiranju razpoke že takoj tudi nestabilna porušitev preizkušanca. V primeru ko je med iniciiranjem razpoke ter lomom preizkušanca absorbirane le malo energije v primerjavi z energijo, porabljeno za plastično deformacijo, lahko absorbirano specifično energijo loma približno izračunamo z integralom:

$$W_{\rm C} = \int_{0}^{\varepsilon_{\rm f}} \sigma \mathrm{d}\varepsilon \tag{41}$$

Absorbirana specifična energija loma $W_{\rm C}/({\rm MJ/m^3})$ je torej enaka površini pod krivuljo prava napetost-prava deformacija v mejah od začetka tečenja ($\varepsilon = 0$ pri $\sigma = R_{\rm p0,2}$) pa do loma preizkušanca ($\varepsilon = \varepsilon_{\rm f}$). Označili smo jo z $W_{\rm C}$, pri čemer indeks "C" pomeni, da gre – kot bomo videli – za kritično vrednost, povezano z iniciiranjem napredujoče razpoke⁴¹.

Izračunavanje integrala (41) načeloma zahteva zvezno merjenje minimalnega prereza cilindričnega preizkušanca med natezanjem. Vendar si tudi tokrat pomagamo s predpostavljenim linearnim potekom prave napetosti vse od pojavljanja plastične nestabilnosti pa do porušitve preizkušanca. Pri tem pa sta možna dva nekoliko različna privzetka. MacGregor⁴², ki je eksperimeniral z različnimi jekli, je privzel, da je prava napetost σ linearno odvisna od pravega raztezka ε , kot je to prikazano v diagramu na **sliki 6**, in kar je zapisal kot:

$$\sigma = \sigma_{\rm m} + \sigma_{\rm m} \left(\varepsilon - \varepsilon_{\rm m}\right) \tag{42}$$

pri čemer kaže omeniti, da je MacGregor pri nateznem preizkusu dejansko meril odvisnost prave napetosti od premera preizkušanca na kritičnem mestu oziroma od

Slika 5: Teoretična definicija absorbirane specifične energije loma ASFE (W_C) po Gillemotu^{39.41}

Figure 5: Theoretical definition of absorbed specific fracture energy ASFE (W_C) according to Gillemot³⁹⁻⁴¹

Slika 6: Diagram prava napetost–prava deformacija za nelegirano ogljikovo jeklo 40

Figure 6: True stress-true strain diagram of a plain carbon steel⁴⁰

prave kontrakcije z, ki jo je – analogno Ludwikovi definiciji pravega raztezka – definiral kot⁴³:

$$z = \int_{S}^{S_{0}} \frac{\mathrm{d}S}{S} = \ln \frac{S_{0}}{S}$$
(43)

Körber in Rohland⁴⁴, ki sta eksperimenirala z nikljem, železom, bakrom in aluminijem, pa sta privzela, da je prava napetost linearno odvisna od kontrakcije Z, kar sta zapisala kot:

$$\sigma = 2\sigma_{\rm m} + \sigma_{\rm m} \frac{S}{S_{\rm m}} \tag{44}$$

Obe predpostavki sta le navidezno v nasprotju, saj iz $\varepsilon = \ln (S_0/S) = \ln 1/(1 - Z)$ izhaja:

$$Z = 1 - \exp(-\varepsilon) \tag{45}$$

Če eksponentni del v (45) razvijemo v vrsto, ugotovimo, da sta pri majhnih ε oba privzetka, Körber-Rohlandov in MacGregorjev, identična. Pri kovinskih materialih, pri katerih sta pravi raztezek pri porušitvi $\varepsilon_{\rm f}$ in kontrakcija pri porušitvi $Z_{\rm f}$ dokaj velika, se kaže Körber-Rohlandov privzetek primernejši.

Iz diagrama na **sliki 6** brez težav razberemo, da v primeru linearne odvisnosti med pravo napetostjo in pravim raztezkom velja:

$$W_{\rm C} = \frac{(R_{\rm p0,2} + 2\sigma_{\rm m})}{3} \varepsilon_{\rm m} + \frac{(\sigma_{\rm m} + \sigma_{\rm f})}{2} (\varepsilon_{\rm f} - \varepsilon_{\rm m}) \quad (46)$$

kar nas od daleč spominja na enačbo (39).

Če je $\varepsilon_{\rm f}$ < 1,3, lahko enačbo (46) z zadovoljivo natančnostjo nadomestimo kar z enačbo:

$$W_{\rm C} \approx \frac{(R_{\rm p0,2} + \sigma_{\rm f})}{2} \varepsilon_{\rm f} \tag{47}$$

Če pa je v obravnavanem območju prava napetost linearno odvisna od kontrakcije, pa dobimo:

$$W_{\rm C} = \frac{(R_{\rm p0.2} + 2\sigma_{\rm m})}{3} \varepsilon_{\rm m} + 2\sigma_{\rm m}(\varepsilon_{\rm f} - \varepsilon_{\rm m}) + \sigma_{\rm m} \left[\exp\left(\varepsilon_{\rm m} - \varepsilon_{\rm f}\right) - 1\right]$$
(48)

Ker je obremenitev v trenutku porušitve včasih težko natančno izmeriti, je tudi σ_f lahko manj natančna. Računanje z enačbama (46) oziroma (47) je zato manj natančno kot z enačbo (48).

Omenili smo že, da pri nateznem preizkusu iniciirana razpoka prične napredovati le malo pred porušitvijo cilindričnega nateznega preizkušanca, zato je specifična energija loma skoraj identična absorbirani energiji do loma. Napredujoča razpoka v osrednjem delu nateznega preizkušanca se torej iniciira, kakor hitro je v točki iniciirania na enoto volumna absorbirana energija $W_{\rm C}$. Lomnomehansko je tedaj dosežena kritična hitrost sproščanja deformacijske energije (critical strain-energy release rate) preko celotne površine napredujoče razpoke. V podrobnostih bo zveza med absorbirano energijo do loma in lomno žilavostjo obravnavana v poglavju 2.2 o cilindričnem nateznem preizkušancu z zarezo po obodu, saj se takšni natezni preizkušanci pogosto uporabljajo za oceno lomne žilavosti v povezavi s kriterijem gostote deformacijske energije⁴⁵⁻⁴⁸.

Ne kraju tega poglavja ne kaže zamolčati dejstva, da bi bila namesto specifične energije, absorbirane do loma W_c /enačbe (46) do (48)/ za merjenje lomne žilavosti – na primer s cilindričnimi preizkušanci z obodno zarezo – najbrž primernejša Cockcroft-Lathamova specifična energija W /enačba (39)/, to je ploščina pod krivuljo σ^* vs. ε do porušitve. Res je namreč maksimalna aksialna napetost σ^* , delujoča v osi cilindričnega nateznega preizkušanca ter s tem povezana specifična absorbirana energija W, relevantna za nukleacijo por in njihovo zlivanje v razpoko ter za njeno napredovanje iz sredine gladkega cilindričnega preizkušanca. Pri preizkušancih z obodno zarezo, pa bo ta energija absorbirana v plastični coni ob korenu zareze, iz katere napreduje razpoka.

1.5 Hahn-Rosenfieldova korelacija za lomno žilavost K_{Ic}

Popolnoma neodvisno od opisanega kriterija gostote doformacijske energije pa sta Hahn in Rosenfield⁴⁹ na modelu nateznega preizkusa z gladkim cilindričnim preizkušancem zasnovala svojo polempirično koncepcijo določevanja lomne žilavosti nekaterih kovinskih materialov. V tem pregledu bomo analizo Hahn-Rosenfieldove korelacijske enačbe za lomno žilavost $K_{\rm Ic}$ povzeli po Garretu in Knottu⁵⁰ večinoma tako, kot je objavljena v knjigi Fracture Mechanics avtorjev Jansena, Zuidema in Wanhilla⁵¹.

Hahn in Rosenfield sta obravnavo pričela z razpoko, osnovne značilnosti njunega modela pa so prikazane na sliki 7, na kateri je označeno območje intenzivne plastične deformacije v okolici konice razpoke. Širina tega območja λ je odvisna od deformacijskega utrjevanja kovine, to je od eksponenta deformacijskega utrjevanja *n*. Strižno deformacijo ob konici razpoke zapišemo približno kot:

Slika 7: Model plastične cone pri ravninskem deformacijskem stanju na začetku pojavljanja nestabilnosti 51

Figure 7: Model of plane strain plastic zone at the onset of instability $^{\rm 51}$

$$\gamma = \frac{\frac{\delta_{t}}{2}}{\lambda(n)} \tag{49}$$

pri čemer je δ_t odpiranje konice razpoke.

Jedkanja plastične cone dokazujejo, da deformacija v tej coni ni enakomerna. Predpostavimo linearno porazdelitev strižne deformacije, pa tudi, da je povprečna natezna deformacija $\overline{\epsilon}$ v tem območju približno $\gamma/2$. Potem je maksimalna natezna deformacija ob konici razpoke:

$$\varepsilon_{\max} = 2\overline{\varepsilon} = \gamma = \frac{\delta_t}{2\lambda(n)}$$
 (50)

Ob pojavu loma je $\delta_t = \delta_{t \text{ krit}}$ in $\varepsilon_{\text{max}} = \varepsilon_f^*$ ter tudi $\lambda(n) = \lambda(n)_{\text{krit}}$. Torej

$$\varepsilon_{\rm f}^* = \frac{\delta_{\rm t\,krit}}{2\lambda(n)_{\rm krit}} \tag{51}$$

Hahn in Rosenfield sta merila $\lambda(n)_{\text{krit}}$. pri številnih jeklih, titanovih ter aluminijevih zlitinah. Za ravninsko deformacijsko stanje sta našla odvisnost $\lambda(n)_{\text{krit}} = 0,025$ n^2 , če sta širino plastične cone izrazila v metrih. Izkoristila sta tudi spoznanje McClintocka⁵², ki je izračunal kritično pravo deformacijo ε_{f}^* , potrebno za koalescenco mikropraznin pri duktilnem tipu nukleacije mikrorazpok, in dobil:

$$\varepsilon_{\rm f}^* = \frac{\varepsilon_{\rm f}}{3} \tag{52}$$

pri čemer je ε_f lomna duktilnost pri nateznem preizkusu, ki smo jo že izračunali z enačbo (9) kot: $\varepsilon_f = \ln (S_0/S_f) = \ln 1/(1 - Z_f)$.

Eksperimenti Robinsona in Tetelmana⁵³ so pokazali, da pri ravninskem deformacijskem stanju odvisnost med δ_t in faktorjem intenzitete napetosti K_I teži k vrednosti, napovedani z Dugdale-jevim približkom:

$$\delta_{t} = \frac{K_{1}^{2} (1 - \nu^{2})}{\alpha E R_{p0,2}} \approx \frac{K_{1}^{2}}{E R_{p0,2}}$$
(53)

pri čemer je ν Poissonovo število, E pa modul elastičnosti.

Ko v enačbo (53) za δ_t vstavimo kritično vrednost $\delta_{t\,krit}$ iz enačbe (51), pri čemer upoštevamo navedena

MATERIALI IN TEHNOLOGIJE 39 (2005) 6

izraza za $\lambda(n)_{\text{krit.}}$ in ε_{f}^* ter upoštevamo tudi dejstvo, da tedaj K_{I} doseže kritično vrednost K_{Ic} , dobimo:

$$K_{\rm Ic} = \sqrt{\frac{0.05\varepsilon_{\rm f} n^2 ER_{\rm p0.2}}{3}}$$
(54)

kar je znana Hahn-Rosenfieldova korelacijska enačba za izračunavanje lomne žilavosti $K_{\rm Ic}$ iz rezultatov nateznega preizkusa, opravljenega z gladkim cilindričnim preizkušancem. Zaradi izkustveno ugotovljene odvisnosti med $\lambda(n)_{\rm krit}$. in *n* je korelacija (54) polempirična, zato moramo paziti na enote. Ako napetost tečenja $R_{\rm po,2}$ in modul elastičnosti *E* izrazimo kot *E*/(MN m⁻²) oz. *E*/MPa, dobimo lomno žilavost $K_{\rm Ic}/(MN m^{-3/2})$ oz. $K_{\rm Ic}/(MPa m^{1/2})$.

Enačba (54) se uporablja za izračunavanje lomne žilavosti jekel srednje in visoke trdnosti. Izkazalo pa se je celo54, da jo lahko uporabimo za izračunavanje mejnega praga intenzitete napetosti K_{TH} oz. K_{HE} navodičenih jekel z visoko trdnostjo, če le v enačbo (54) vstavimo izmerjene vrednosti pri upočasnjenem natezanju. Že majhne koncentracije vodika v jeklu (manjše od 1 µg/g) z visoko trdnostjo namreč pri upočasnjenem natezanju poslabšajo lomno duktilnost $\varepsilon_{\rm f}$ zaradi segregiranja vodika v območju triosnosti (vrat preizkušanca) ter povzročijo pojavljanje mejnega praga intenzitete napetosti. Pri statičnem obremenjevanju navodičenih jekel z visoko trdnostjo ima obstoj takšnega praga za posledico zapozneli lom jekla (delayed failure). Pri navadnih hitrostih natezanja pa za segregiranje vodika ni dovolj časa in je z enačbo (54) izračunana vrednost na osnovi podatkov "hitrega" nateznega preizkusa dejansko lomna žilavost jekla.

Poleg Hahn-Rosenfieldove formule so znani še drugi poskusi iskanja korelacij med lomno žilavostjo kovinskih materialov in lastnostmi pri enoosnem nateznem preizkusu. Schwalbe⁵⁵ navaja eno od takšnih formul:

$$K_{\rm Ic} = \sqrt{4,55} (\varepsilon_{\rm f}^* + 0,23) d_{\rm void} E R_{\rm p0,2}$$
(55)

Slika 8: Tvorba mikropor ob delcih v območju intenzivne plastične deformacije 51

Figure 8: Microvoid formation at particles within the region of intense plastic deformation⁵¹

utemeljeni z zahtevo, da mora povprečna deformacija na razdalji d_{void} med delci (vključki, izločki) doseči ε_f^* , da pride do loma. Nasprotno od Hahn-Rosenfieldove korelacije (54) vključuje korelacija (55) tudi mikrostrukturni parameter d_{void} , za katerega vzamemo kar premer jamic na prelomni površini. Zdi se, da mora biti razdalja d_{void} znatno manjša od $\lambda(n)$, pa tudi manjši od $\delta_{t krit}$, če naj bo K_{Ic} veljavna. Obe zahtevi sta prikazani na **sliki 8**.

Enačba (56) pove, da je lomna žilavost na zapleten način odvisna od drugih materialnih lastnosti. Če se na primer $R_{po,2}$ poveča, lahko pričakujemo, da se bo ε_f^* zmanjšal, to zmanjšanje pa je povezano z zmanjšanjem efektivnega d_{void} (premera jamic) zaradi nukleacije in rasti mikropor na mnogo več mestih. Za vse obravnavane kovinske materiale (aluminijeve in titanove zlitine ter jekla) pa velja smer zmanjševanja lomne žilavosti pri povečevanju napetosti tečenja.

V poglavju o Cockcroft-Lathamovem kriteriju preoblikovalnosti smo ugotovili, da je specifična absorbirana energija do loma W odvisna od maksimalne aksialne natezne napetosti σ^* , delujoče v osi cilindričnega nateznega preizkušanca, ta pa od krivinskega polmera ρ pritisnjenega kroga v vratu preizkušanca. Pri dveh kovinskih materialih z različnima krivinskima polmeroma vratu na nateznem preizkušancu, a enakimi drugimi lastnostmi (predvsem enakima kontrakcijama oz. lomnima duktilnostima), bo več absorbirane energije do loma pri kovinskem materialu z manjšim krivinskim polmerom vratu (lokalizirana kontrakcija, večja σ^*), manj pa pri kovinskem materialu z večjim krivinskim polmerom vratu (difuzna kontrakcija, manjša σ^*). Opisanega vpliva večje ali manjše difuznosti kontrakcijskega zoženja na cilindričnem nateznem preizkušancu na specifično absorbirano energijo do loma, s tem pa – kot bomo videli kasneje – tudi na lomno žilavost, pa ni najti v Hahn-Rosenfieldovi korelacijski enačbi (54) za K_{Ic}. Vendar pa je potencialni vpliv razlik v difuznosti kontrakcijskega zoženja na lomno žilavost kovin (pri nespremenjeni lomni duktilnosti) verjetno zelo majhen.

2 CILINDRIČNI NATEZNI PREIZKUŠANEC Z OBODNO ZAREZO

2.1 Zarezna občutljivost

Omenili smo že, da hidrostatične komponente nateznega triosnega stanja napetosti vplivajo na prehod v krhko stanje, podobno kot nizke temperature in visoke hitrosti deformacije pri enoosnem natezanju. Pri preizkušancih z zarezo moramo zato računati s poslabšanjem lomne duktilnosti ob dnu zareze zaradi neugodnega večosnega stanja nateznih napetosti na tem mestu. Ob zarezi prihaja do koncentracije napetosti in raztezkov, seveda odvisno od ostrine in globine zareze. Na površini v dnu zareze in na zunanji površini ob zarezi obstaja dvoosno napetostno stanje. V notranjosti ob zarezi pa je triosno stanje nateznih napetosti, ki lahko privede do krhkega loma. Na **sliki 9a** je prikazan potek največjih glavnih raztezkov in napetosti za primer upoštevanja linearne teorije elastičnosti¹. Konice poteka raztezkov in napetosti so tu vselej na dnu zareze. Na sliki 9b pa so prikazani poteki največjih glavnih raztezkov in napetosti za primer upoštevanja elasto-plastične teorije, in sicer za ravninsko napetostno stanje (RNS), na primer pri tankih ploščah, ter za ravninsko deformacijsko stanje (RDS), na primer v srednji ravnini debelih plošč¹. V obeh primerih ima potek največjih raztezkov konico na dnu zareze. Toda medtem ko ima potek napetosti pri RNS še vedno konico na dnu zareze, pa ima potek napetosti pri RDS konico napetosti zaradi neugodne triosnosti znotraj. Pri RDS imamo dva možna vzroka začetka porušitve natezno obremenjenega preizkušanca (ali pa konstrukcijskega elementa) z zarezo, bodisi doseganje lomne duktilnosti na površini dna zareze, bodisi doseganje kohezijske trdnosti v konici največje normalne napetosti znotraj ob dnu zareze. S tem nastopi stabilno napredovanje razpoke. Nestabilno napredovanje pa pri duktilnem kovinskem materialu nastopi pri višji obtežbi takrat, ko

Slika 9: Največje napetosti in raztezki pri elastični (a) in pri elasto-plastični rešitvi $(b)^1$

Figure 9: Maximum stresses and strains at elastic solution (a) and at elasto-plastic solution $(b)^1$

postane prirastek sproščene elastičnostne energije pri napredovanju razpoke večji od energije, ki se pri tem porabi za plastifikacijo vrha razpoke in nastanek novih površin napredujoče razpoke.

Poslabšanje lokalne duktilnosti kovinskih materialov zaradi izoblikovanja triosnega stanja napetosti in njenega gradienta ob zarezi imenujemo zarezna občutljivost (notch sensitivity). Za merjenje zarezne občutljivosti največkrat uporabljamo cilindrične natezne preizkušance z zarezo po obodu (circumferentially notched round-bar specimens), pri čemer je kot odprtja zareze 60°, korenski polmer v dnu zareze pa 0,025 mm ali manj⁵⁶. Globina zareze je navadno takšna, da je površina prečnega prereza na mestu zareze enaka polovici površine prečnega prereza gladkega preizkušanca. Več je o takšnih nateznih preizkusih že sredi prejšnjega stoletja pisal Lubahn⁵⁷, merjenja zarezne občutljivosti pa so tedaj mnogo uporabljali za ocenjevanje lastnosti jekel z visoko trdnostjo, pri raziskavah vodikove krhkosti jekel in titanovih zlitin ter pri ocenjevanju zarezne občutljivosti zlitin za uporabo pri visokih temperaturah (na primer nimonikov za lopatice turbin reakcijskih motorjev). Zdelo se je, da bo tovrstno merjenje z razvojem mehanike loma izgubilo na pomenu, pa ni čisto tako.

Pričnimo z natezno trdnostjo ob zarezi (*notch tensile strength*) R_{NTS} , ki je definirana s kvocientom maksimalne, to je porušne obremenitve in površine začetnega neto-prereza preizkušanca na mestu zareze. Zaradi plastičnega odpora ob zarezi (*plastic constraint*) bo ta vrednost večja od natezne trdnosti R_{m} gladkega preizkušanca, če bo le kovinski material vsaj nekoliko žilav. Zarezno občutljivost bomo zato izrazili z ulomkom, ki ga imenujemo zarezno trdnostno razmerje NSR (*notch-strength ratio*):

Slika 10: Mehanske lastnosti dveh jekel ob zarezi. Jeklo A je bolj zarezno občutljivo od jekla B^2

Figure 10: Notch tensile properties of two steels. Steel A has higher notch sensitivity than steel B^2

$$NSR = \frac{\sigma_{\rm NTS}}{R_{\rm m}}$$
(56)

Po dogovoru je kovinski material krhek ob zarezi, če je NSR < 1. Povejmo še, da pri tovrstnem merjenju često ugotavljamo tudi kontrakcijo (duktilnost) ob zarezi. Na **sliki 10** je na primer prikazan potek trdnosti in duktilnosti ob zarezi za jekli A in B v odvisnosti od natezne trdnosti. Očitno je jeklo A zarezno občutljivejše od jekla B, saj pri jeklu A razmerje *NSR* doseže vrednost manj od 1 že pri manjši trdnosti (ima pa tudi vseskozi slabšo duktilnost ob zarezi).

Poleg zareznega trdnostnega razmerja *NSR* se uporablja še *NYR* ali *notch-yield ratio*, definiran kot:

$$NYR = \frac{\sigma_{\rm NTS}}{R_{\rm p0.2}}$$
(57)

Kaufman in Johnson⁵⁸ sta pokazala, da je *NYR* bolj indikativno od *NSR*, ko gre na primer za oceno relativne žilavosti različnih aluminijevih zlitin, in to neodvisno od oblike zareze. Na osnovi teh opažanj so bile raziskane številne aluminijeve zlitine⁵⁹⁻⁶¹.

Tada s sodelavci⁶² je celo našel odvisnost med lomno žilavostjo $K_{\rm Ic}$ in natezno trdnostjo ob zarezi $\sigma_{\rm NTS}$, in sicer:

$$K_{\rm Ic} = 0.454 \ \sigma_{\rm NTS} \ D^{1/2} \tag{58}$$

pri čemer je *D* zunanji premer cilindričnega nateznega preizkušanca z obodno zarezo. Enačba (58) daje dobre rezultate celo brez korekcije plastične cone, če je le razmerje *NYR* < 1,1. Raziskave, ki sta jih na različnih aluminijevih zlitinah opravila Kang in Grant⁶³, pri čemer sta upoštevala tudi velikost plastične cone v korenu zareze, pa je pokazala, da pri *NYR* ≤ 1,1 velja enačba:

$$K_{\rm Ic} = 0.454 \frac{d}{a} \left(R_{\rm p0,2}^2 - b R_{\rm p0,2} \right)$$
(59)

pri čemer sta *a* in *b* konstanti ugotovljene linearne odvisnosti: $R_{p0,2} = a NYR + b$, *d* pa ima vrednost $4(\pi D)^2$.

2.2 Povprečna specifična energija loma

Podobna merjenja absorbirane specifične energije loma ASFE, kot jih opravimo z gladkimi cilindričnimi preizkušanci, o čemer je bil govor v poglavju 1.4, pa lahko opravimo tudi s cilindričnimi preizkušanci z zarezo po obodu. Tako izračunana vrednost pa je "absorbirana povprečna specifična energija loma" W_m , ki – nasprotno od absorbirane specifične energije loma W_C – ni prava značilnost kovinskega materiala. Pri cilindričnih nateznih preizkušancih z zarezo po obodu doseže aksialna natezna napetost svojo maksimalno vrednost v korenu zareze, kjer sta glavna radialna in tangencialna napetost enaki nič, svoji maksimalni vrednosti pa ti napetosti dosežeta v osi preizkušanca. Plastično tečenje zato prične iz korena obodne zareze, kjer se izoblikuje plastična cona (z naraščanjem ostrine zareze se le-ta

Slika 11: Približna porazdelitev absorbirane specifične energije W v nateznem preizkušancu z obodno zarezo. Z W_m je označena povprečna specifična energija⁴⁰

Figure 11: Approximate distribution of absorbed specific energy W in a circumferentially notched tensile specimen. The average specific energy W_m is designated⁴⁰

zmanjšuje), medtem ko je v notranjosti preizkušanca deformacija še vedno elastična. Napetosti in deformacije je v takšnem primeru težko izračunati, pričakujemo pa lahko, da bo prišlo do loma preizkušanca, kakor hitro bo energija W_c , ki pa je značilnost materiala /enačba (41)/, absorbirana v majhni plastični coni ob korenu zareze. Če je zareza dovolj ostra, ustreza porazdelitev absorbirane specifične energije W v območju zareze, kot je prikazano na **sliki 11**. Glede na povedano je ta porazdelitev heterogena, za iniciiranje razpoke potrebna kritična vrednost W_c pa je absorbirana le v šrafiranem kolobarju ob korenu zareze širine b in višine l. Elastične deformacije v notranjosti preizkušanca pa so majhne, zato specifično elastičnostno deformacijsko energijo kar zanemarimo. Povprečno specifično energijo W_m definiramo kot:

$$W_{\rm m} = \frac{V}{V} \tag{60}$$

Integrala v (60) pa ne moremo enostavno izračunati, saj moramo poznati funkcijsko odvisnost *W*-ja od volumna. Vendar lahko račun poenostavimo, če predpostavimo, da je specifična energija loma $W_{\rm C}$ absorbirana do iniciiranja razpoke le v območju plastične cone, to je v kolobarju premera *d*, širine *b* in višine *l*, v preostalem področju pa je absorbirana le elastičnostna deformacijska energija, ki je zanemarljiva. Potem integral nadomestimo z enostavnim produktom volumna plastične cone in absorbirane specifične enerije $W_{\rm C}$ v tej coni, iz (60) pa dobimo:

$$W_{\rm m} = \frac{W_c \, \pi dbl}{\frac{\pi d^2}{4}l} = \frac{W_c \, 4b}{d} \tag{61}$$

V prvem približku pa je širina plastične cone *b* premo sorazmerna korenskemu polmeru zareze ρ , torej: $b = c\rho$, pri čemer je *c* neka konstanta. Iz (61) sedaj dobimo:

$$W_{\rm m} = \frac{W_c \ 4c\rho}{d} \tag{62}$$

Iz enačbe (62) izhaja pomembno spoznanje, da so z različnimi preizkušanci izmerjene povprečne specifične energije loma W_m istega kovinskega materiala medsebojno enake, če so le uporabljeni geometrijsko podobni natezni preizkušanci z obodno zarezo. Pri tem pa morajo biti izpolnjeni trije pogoji: (I) zareza mora biti dovolj globoka, (II) korenski polmer mora biti dovolj majhen in (III) specifična hitrost deformacije mora biti pri različnih preizkušancih približno enaka. Metodo merjenja povprečne specifične lomne energije je za karakterizacijo lastnosti varjenih spojev uspešno uporabil Konkoly^{64,65}, ki je tudi razvil uporabno eksperimentalno tehniko.

2.2.1 Povprečna energija loma in lomna žilavost

V prejšnjem poglavju je bilo omenjeno, da se v cilindričnih nateznih preizkušancih, bodisi gladkih (poglavje 1.4) bodisi takšnih z obodno zarezo (poglavje 2.2), iniciira napredujoča razpoka, kakor hitro je v točki njenega iniciiranja absorbirana specifična energija W_c . V skladu z lomnomehanskimi definicijami pa je v takšnem primeru dosežena kritična hitrost sproščanja deformacijske energije (*critical energy release rate*) G_c preko površine razpoke. Naj ima, upoštevaje **sliko 11**, razpoka v plastični coni ob korenu obodne zareze, kjer je absorbirana energija W_c , ploščino S. Če je višina plastične cone l, lahko celotno energijo porabljeno za tvorjenje razpoke, izrazimo bodisi z W bodisi z G na naslednji način:

$$\int_{S} W l dS = \int_{S} G dS$$
(63)

pri čemer je na levi strani energija absorbirana v volumnu ldS, na desni pa hitrost sproščanja energija na ploščini dS. Privzamemo lahko, da bo ob zelo ostrih zarezah (majhen ρ) v volumnu, določenem z velikostjo nastale razpoke, absorbirana energija W_C , da pa bo v delu preizkušanca, v katerem so le elastične deformacije, do loma absorbirana le energija W, ki je praktično enaka nič. S tem enostavnim privzetkom lahko enačbo (63) nadomestimo z enostavnima produktoma⁶⁶:

$$W_{\rm C} l_{\rm C} S = G_{\rm C} S \tag{64}$$

V enačbi (64) indeks "C" označuje kritične razmere, in je $l_{\rm C}$ višina volumna z razpoko. To višino sta na izviren način z ekstrapolacijsko metodo, prikazano v diagramu na **sliki 12**, določila Czoboly in Radon^{48,67}. V skladu z njunimi ugotovitvami je namreč odvisnost višine plastične cone *l* od korenskega polmera zareze ρ linearna z odklonom v določenem območju. Z ekstrapolacijo do $\rho = 0$ dobimo $l_{\rm C}$, to je z razpoko povezano višino plastične cone⁴⁸. Sedaj pa že lahko izračunamo kritično hitrost sproščanja energije $G_{\rm C}$ iz znane speci-

2.2.2 Drugi načini ocenjevanja lomne žilavosti

Slika 12: Višina plastične cone lv odvisnosti od korenskega polmera ρ^{41}

Figure 12: Plastic zone height *l* as a function of notch radius ρ^{41}

fične energije W_c , izmerjene z gladkimi preizkušanci iz poglavja 1.4 ter iz znane odvisnosti višine plastične cone *l* od korenskega polmera ρ , za kar potrebujemo le nekaj preizkušancev z obodno zarezo z različnimi korenskimi polmeri. Iz (64) dobimo:

$$G_{\rm C} = W_{\rm C} \ l_{\rm C} \tag{65}$$

Podobno pot je ubral tudi Havas s sodelavci⁴⁵, ki pa je kritično hitrost sproščanja energije $G_{\rm C}$ povezal z lomno duktilnostjo $\varepsilon_{\rm f}$, izmerjeno z gladkim cilindričnim preizkušancem, specifično energijo $W_{\rm C}$ ter z odpiranjem ustja razpoke COD ($\delta_{\rm C}$, razteg plastične cone). Dobil je enačbo:

$$G_{\rm C} = \frac{W_{\rm C}COD}{(\exp\varepsilon_{\rm f}) - 1} \tag{66}$$

ki se le nebistveno razlikuje od Czoboly-Radonove enačbe (65). Ker je po Irwinu doseganje kritičnega faktorja intenzitete napetosti $K_{\rm I}$, to je $K_{\rm Ic}$, ekvivalentno kritični hitrosti sproščanja deformacijske energije $G_{\rm C}$ (ali $J_{\rm C}$; o povezavi med COD, CTOD, δ ter J-integralom lahko bralec izve več na primer v Dietru² na straneh 362–368) dobimo na enostaven način tudi lomno žilavost $K_{\rm Ic}$. Za ravninsko deformacijsko stanje namreč velja:

$$K_{\rm lc}^{2} = \frac{G_{\rm C}E}{(1-\nu^{2})}$$
(67)

Preskuse jekla St 52-3, ki jih je pri nizkih temperaturah (pod –100 °C) opravil Havas s sodelavci⁴⁵, so potrdila veljavnost enačb (65) in (66), saj so bile z energijo $W_{\rm C}$ izračunane lomne žilavosti $K_{\rm Ic}$ skoraj enake izmerjenim vrednostim po standardnem ASTM, postopku s "compact tension"-preizkušanci. Ujemanje je bilo malo slabše le pri temperaturah, pri katerih ni bil pri standardnem merjenju popolnoma izpolnjen pogoj debeline "compact tension"-preizkušancev, in so bile zato z upoštevanjem energije $W_{\rm C}$ izračunane lomne žilavosti nekoliko nižje.

Poleg že opisanega merjenja lomne žilavosti $K_{\rm Ic}$ s

cilindričnimi nateznimi preizkušanci z obodno zarezo, utemeljenega na specifični energiji, absorbirani do loma, in opisanega v prejšnjem poglavju, so v literaturi navedeni še nekateri drugačni načini obravnavanja uporabe preizkušancev z obodno zarezo za merjenje lomne žilavosti. Omenjene so že bile raziskave Tada s sodelavci⁶² ter Kanga in Granta⁵⁹, opozoriti pa kaže vsaj še na novejše raziskave Bayrama s sodelavci⁶⁸⁻⁷⁰, opravljene na jeklih in različnih aluminijevih zlitinah. V literaturi zadnjih let so sicer opisani še nekateri načini uporabe tovrstnih preizkušancev za določevanje mehanskih lastnosti^{71.75}, ki pa jih na tem mestu ne bomo posebej obravnavali.

Bayram s sodelavci⁷⁰ navaja, pri tem pa se sklicuje na Lija in Bakkerja⁷⁶, da je pri cilindričnih nateznih preizkušancih z obodno zarezo, ki je zaključena sama v sebi, prej doseženo ravninsko deformacijsko stanje kot pa pri preizkušancih standardne geometrije. Navaja pa tudi, pri čemer se sklicuje na avtorja tega pregleda⁷⁷, da je po obodu cilindričnih preizkušancev zaradi radialnega odvoda toplote pri toplotni obdelavi izoblikovana enovita mikrostruktura, pri preizkušancih z obodno zarezo pa tudi ni kvarnega vpliva ekscentričnosti utrujenostnega kolobarja, ki je sicer značilnost preizkušancev z utrujenostno obodno razpoko.

Pogojno lomno žilavost preiskanih jekel in aluminijevih zlitin je Bayram⁷⁰ meril s cilindričnimi preizkušanci z zarezo po obodu, katerih geometrija je prikazana na **sliki 13**. Korenski polmer zareze je dosegal približno 0,095 mm. Za račun pogojne lomne žilavosti, ki jo je označil z K_c , je uporabil znano enačbo²:

$$K_{\rm C} = \frac{F_{\rm f}}{D^{3/2}} \left(1.72 \frac{D}{d} - 1.27 \right) \tag{68}$$

Slika 13: Geometrija preizkušanca z obodno zarezo, uporabljenega za določevanje lomne žilavosti zlitin po Bayramu⁷⁰ z ločenim detajlnim prikazom dna zareze

Figure 13: Geometry of circumferentially notched specimen used for the fracture toughness determination of the alloys according to Bayram⁷⁰ with detailed bottom of the notch shown separately

MATERIALI IN TEHNOLOGIJE 39 (2005) 6

ki jo bomo še srečali pri merjenju lomne žilavosti K_{Ic} s cilindričnimi nateznimi preizkušanci z obodno razpoko.

Z d in D sta v (68) označena premera zarezanega in nezarezanega dela cilindričnega preizkušanca, $F_{\rm f}$ pa je pri lomu izmerjena sila.

Poleg enačbe (68) pa je Bayram s sodelavci⁷⁰ za računanje lomne žilavosti uporabil tudi enačbo (58), ki jo je razvil Tada s sodelavci,⁶² pa tudi enačbo, ki sta jo pri svojih zgodnjih raziskavah faktorja intenzitete napetosti $K_{\rm I}$ v korenu zareze na cilindričnih preizkušancih izpeljala Paris in Sih⁷⁸ in ki ima obliko:

$$K_{\rm I} = \sigma \sqrt{\pi D} f\!\left(\frac{d}{D}\right) \tag{69}$$

kjer je f(d/D) od dimenzij preizkušanca odvisna brezdimenzijska funkcija, σ pa je delujoča aksialna natezna napetost v cilindričnem delu preizkušanca, dovolj stran od mesta zareze. Enačbo (69) najdemo včasih zapisano tudi z neto napetostjo $\sigma_{\rm N} = 4F/\pi d^2$, računano tedaj na krožni ligament premera *d*, le funkcija f(d/D) ima potem nekoliko drugačno obliko.

Vrednosti, dobljene z enačbo (69), so se dobro skladale z vrednostmi, dobljenimi z enačbama (58) in (68), Bayram⁷⁰ pa je uporabil še rezultate raziskav Shabare s sodelavci⁷⁹ ter dobljene vrednosti korigiral z upoštevanjem faktorja koncentracije napetosti k_t , ki alternativno opisuje vpliv geometrije razpoke na nivo lokalne napetosti ob konici in je utemeljen s teorijo elastičnosti. V najpreprostejši obliki je ta faktor definiran z izrazom:

$$k_{\rm t} = 2 \sqrt{\frac{a}{\rho}} \tag{70}$$

kjer je ρ korenski polmer razpoke, *a* pa dolžina (robne) razpoke. Faktor k_t narašča z naraščanjem dolžine razpoke in zmanjševanjem polmera njene konice.

Za faktor intenzitete napetosti K_{I} pa v lomni mehaniki imamo:

$$K_{\rm I} = \sigma \sqrt{\pi a} \tag{71}$$

pri čemer je σ nominalna bruto natezna napetost (*gross nominal stress*), delujoča pravokotno na ravnino napredovanja razpoke. Dejansko je to σ_{nom} dovolj stran od mesta zareze (ne pa morda neto napetost, kot se to včasih zmotno navaja). Iz enačb (70) in (71) za faktor koncentracije napetosti k_t sedaj izhaja:

$$k_{\rm t} = \frac{2K_{\rm t}}{\sigma\sqrt{\pi\rho}} \tag{72}$$

kar velja ne le za razpoko, pač pa tudi za koren zelo ostre zareze.

Za cilindrični natezni preizkušanec s topo obodno zarezo pa je Bayram⁷⁰ uporabil dva alternativna izraza za faktor koncentracije napetosti, utemeljen na mehaniki loma, ki ju je raziskal že Shabara s sodelavci⁷⁹ in od katerih eden pripada Irwinu⁸⁰, drugi pa Benthemu in Koiterju⁸¹. Le omenimo, da je Shabara s sodelavci⁷⁹ pri svojih raziskavah upošteval tudi faktor koncentracije napetosti po Nisitaniju in Nodaju⁸².

Po Irwinu⁸⁰ je faktor koncentracije napetosti definiran kot:

$$k_{\rm t1} = \frac{2}{\sqrt{\pi\alpha}} \sqrt{f_1\left(\frac{d}{D}\right)} \tag{73a}$$

pri čemer je $\alpha = \rho/d$ zarezno razmerje toposti (*notch bluntness ratio*), d/D je geometrijsko razmerje preizkušanca (*specimen geometry ratio*), funkcija pod korenom pa je f₁(d/D) = $8\pi [1 - (d/D)^2]/{5 + 3 [1 - (d/D)^2]}^2$.

Po Benthemu in Koiterju⁸¹ pa je:

$$k_{12} = \sqrt{\frac{2}{\alpha}} f_1\left(\frac{d}{D}\right) \tag{73b}$$

kjer je:

$$f_{2}\left(\frac{d}{D}\right) = \frac{1}{2} \left[1 + \frac{1}{2}\left(\frac{d}{D}\right) + \frac{3}{8}\left(\frac{d}{D}\right)^{2} - 0,363\left(\frac{d}{D}\right)^{3} + 0,731\left(\frac{d}{D}\right)^{4}\right] \sqrt{1 - \frac{d}{D}}$$

Očitno se faktor koncentracije napetosti zmanjšuje, če se povečuje zarezno razmerje toposti $\alpha = \rho/d$, in je zato koncentracija napetosti intenzivnejša, če je tudi razpoka ostrejša.

Za korekcijo izmerjenih lomnih žilavosti je Bayram⁷⁰ uporabil dva korekcijska faktorja, C_1 in C_2 definirana kot:

$$C_1 = \frac{k_{t1}}{k_t}$$
 ter $C_2 = \frac{k_{t2}}{k_t}$ (74)

ter ugotovil, da sta korekcijska faktorja skoraj neodvisna od razmerja ρ/d (C-ja variirata v mejah od 0,99 do 1,01). Bayram s sodelavci⁷⁰ je zato ugotovil, da opisani korekciji komaj kaj spremenita z enačbami (58), (59) in (69) izmerjene lomne žilavosti, ter je zato sklepal, da so cilindrični natezni preizkušanci z (dovolj ostro) obodno zarezo primerni za veljavno merjenje lomne žilavosti. Ta ugotovitev se ujema s Shabaro⁷⁹, ki pri jeklu in bronu tudi ni našel odvisnosti lomne žilavosti od zareznega razmerja toposti ρ/d , vse do razmerja ρ/d = 0,033; seveda pa se z naraščanjem ρ/d preko navedene vrednosti prične napaka povečevati in naraste na 25 % pri $\rho/d = 0,217$. Primerjava lomne žilavosti $K_{\rm Ic}$, izmerjene s preizkušanci z ostro zarezo z lomno žilavostjo, izmerjeno s preizkušanci s topo zarezo in opravljeno korekcijo, je pokazala, da med obema vrednostima obstaja dobro ujemanje. Merjenje je še potrdilo, da se navidezna lomna žilavost preiskanih kovinskih materialov povečuje s povečevanjem razmerja ρ/d . Shabara⁷⁹ navaja še, da ostaja navidezna lomna žilavost skoraj konstantna pri razmerju $\rho/d < 0.033$, kar naj bi dokazovalo obstoj mejnega korenskega polmera zareze. Pri korenskem polmeru zareze, ki bi bil manjši od mejnega, pa naj bi bila navidezna lomna žilavost zelo

blizu lomni žilavosti K_{Ic} ravninskega deformacijskega stanja. Vendar pa lahko resno podvomimo v smiselnost uporabe razmerja ρ/d pri določanju mejnega korenskega polmera zareze, saj bi bil pri zelo velikih premerih d (in s tem zanesljivo doseženem ravninskem deformacijskem stanju) tudi korenski polmer zareze lahko že dokaj velik, vsekakor prevelik za relevantno merjenje lomne žilavosti. Da je to res, dokazujejo podatki Swansona in sodelavcev⁸³, ki navaja, da je pri preskusu aluminjeve zlitine (7090 aluminium alloy) naletel na obstoj mejnega korenskega polmera zareze z vrednostjo približno 0,02 mm. Spreminjanje navidezne lomne žilavosti v odvisnosti od korenskega polmera zareze ($\rho^{1/2}$) sta raziskovala tudi Ritchi in Horn⁸⁴, in sicer pri jeklu AISI 4340, avstenitiziranem pri temperaturah med 870 °C in 1200 °C. Ugotovila sta obstoj končnega korenskega polmera zareze med 12 µm in 30 µm, odvisno od temperature avstenitizacije (najbrž torej od velikosti kristalnih zrn jekla). To pa je že mnogo verjetnejša vrednost, primerljiva tudi s korenskim polmerom vrha realne utrujenostne razpoke v duktilnem kovinskem materialu.

Donoso s sodelavci⁸⁵ pa je analiziral cilindrični natezni preizkušanec z obodno zarezo z namenom, da bi razvil kalibracijsko funkcijo za takšen preizkušanec pri nateznem obremenjevanju. Našel je geometrijsko funkcijo razmerja d/D, normaliziranega s podatki obremenitev vs. plastični pomik, v obliki, ki je lastnost le materiala. Posledično se lahko cilindrični natezni preizkušanci z obodno zarezo uporabljajo celo za generiranje podatkov J-ja. Veidt in Schindler⁸⁶ sta na primer raziskovala vpliv končnega korenskega polmera zareze pri jeklih z visoko trdnostjo na lomno žilavost, izvrednoteno z analizo na osnovi J-integrala. Izkazalo se je, da pri načinu obremenjevanja I (pravokotno na ravnino napredujoče razpoke) lahko ocenimo iniciiranje razpoke s kriterijem gostote lokalne deformacijske energije. Potrdila sta, da ima končni korenski polmer zareze velik vpliv na lomno obremenitev in torej tudi na navidezni kritični faktor intenzitete napetosti pri tem načinu obremenjevanja. Vpliv korenskega polmera zareze na lomno žilavost J_{Ic} jekla je raziskoval tudi Akourri s sodelavci87 in prav tako našel linearno odvisnost med navideznim $J_{\rm Ic}$ in ρ , pri čemer pa je kritični polmer povezal z velikostjo t. i. "process fracture zone" oziroma z efektivno razdaljo v mikrostrukturi.

Na kraju tega poglavja velja poudariti, da so nekatere literaturne navedbe o obstoju mejnega korenskega polmera zareze, pri katerem naj bi postala izmerjena pogojna lomna žilavost nekaterih kovinskih materialov z razmeroma majhno žilavostjo neodvisna od polmera zareze, velikokrat utemeljene zgolj na dejstvu, da se izmerjena navidezna lomna žilavost ne spremeni kaj dosti z upoštevanjem korekcije vpliva toposti zateze in vpliva geometrije preizkušancev. Takšen sklep pa je preuranjen, če ni brezpogojno podkrepljen tudi z neposrednim merjenjem prave lomne žilavosti po kakšnem od veljavnih standardov (ASTM 399-90 ali pa BS 7448-2),

MATERIALI IN TEHNOLOGIJE 39 (2005) 6

na primer s "compact tension"-preizkušanci z utrujenostno razpoko v korenu zareze. Na osnovi literaturnih navedkov pa se zdi, da je mejni korenski polmer zareze vendarle mikrometrskih dimenzij.

3 CILINDRIČNI NATEZNI PREIZKUŠANEC Z OBODNO RAZPOKO

Na kraju tega pregleda cilindričnih nateznih preizkušancev bomo obravnavali še cilindrične natezne preizkušance z obodno razpoko, natančneje rečeno, cilindrične natezne preizkušance z obodno zarezo in utrujenostno razpoko v korenu zareze. Namenjeni so izključno merjenju lomne žilavosti. Preizkušanec te vrste je prikazan na **sliki 14**, vključno z detajlom korena zareze.

Če je bila pri merjenju lomne žilavosti ugotovljena linearna odvisnost med obremenitvijo in pomikom v ustju zareze (ta pomik je sorazmeren z napredovanjem razpoke), lahko faktor intenzitete napetosti K_1 izračunamo s formulo⁸⁸:

$$K_{1} = \frac{F}{\pi d^{2}} \sqrt{2\pi d} \left[1 + \frac{1}{2} \left(\frac{d}{D} \right) + \frac{3}{8} \left(\frac{d}{D} \right)^{2} - 0,363 \left(\frac{d}{D} \right)^{3} + 0,731 \left(\frac{d}{D} \right)^{4} \right] \sqrt{1 - \frac{d}{D}}$$
(75)

kjer je *D* zunanji (bruto) premer preizkušanca, *d* je neto premer ligamenta preizkušanca po utrujanju, kot je to prikazano na sliki preizkušanca, na kateri smo z d_n označili premer preizkušanca na zarezanem mestu še pred utrujanjem, *F* pa je natezna obremenitev. V oklepaju na desni strani enačbe (75) prepoznamo Benthem-Koiterjevo⁸¹ funkcijo f₂(*d/D*) iz enačbe (73b).

Slika 14: Shematski prikaz preizkušanca z obodno zarezo in utrujenostno razpoko za merjenje lomne žilavosti z ločenim detajlnim prikazom dna zareze z utrujenostno razpoko⁷⁷

Slika 14: Schematic presentation of circumferentially notched and fatigue precracked specimen for fracture toughness measurement with detailed bottom of the notch with the fatigue crack shown separately⁷⁷

Pogosto pa je namesto enačbe (75) v rabi enostavnejša oblika enačbe²:

$$K_{\rm I} = \frac{F}{D^{3/2}} \left(1,72 \frac{D}{d} - 1,27 \right) \tag{76}$$

Obe enačbi (75) in (76) veljata pri pogoju:

$$0.5 < \frac{d}{D} < 0.8$$
 (77)

minimalna dolžina preizkušanca pa mora dosegati vsaj 4*D*. Vrednosti izračunane z enačbama (75) in (76), se med seboj razlikujejo za manj kot pol odstotka.

Enačbo (76) poznamo, saj jo je uporabil že Bayram s sodelavci⁷⁰ (68) pri svojem merjenju pogojne lomne žilavosti $K_{\rm C}$ s preizkušanci z obodno zarezo (le pomen *d*-ja je tokrat drugačen). Za relevantno obremenitev je tedaj Bayram uporabil kar pri lomu izmerjeno silo $F_{\rm f}$.

Če v trenutku loma cilindričnega nateznega preizkušanca z obodno razpoko prevladuje ravninsko deformacijsko stanje, se vrednost K_1 približa lomni žilavosti (*plane-strain fracture toughness*) K_{Ic} . Wei s sodelavci⁸⁹ je ugotovil, da je ravninsko deformacijsko stanje pri tovrstnih preizkušancih doseženo že, ko premer preizkušanca *D* izpolnjuje zahtevo:

$$D \ge 1.5 \left(\frac{K_{\rm Q}}{R_{\rm p0.2}}\right)^2 \tag{78}$$

pri čemer je K_Q pogojna lomna žilavost (če je pogoj (78) s K_Q izpolnjen, je K_Q že tudi K_{Ic} , sicer je treba merjenje ponoviti s preizkušanci večjega premera).

Velikost plastične cone r_y ob vrhu razpoke pa je:

$$r_{\rm y} \approx \frac{1}{6\pi} \left(\frac{K_{\rm Q}}{R_{\rm p0,2}} \right)^2 \tag{79}$$

Omeniti je treba še raziskave Changa⁹⁰, ki je razvil metodo merjenja lomne žilavosti s cilindričnimi nateznimi preizkušanci z obodno razpoko, pri čemer pa ti preizkušanci niso izpolnjevali pogoja (78). Svojo metodo je zasnoval na spoznanju, da normalizirana krivulja soodvisnosti med obremenitvijo in pomikom, veljavna sicer za drobne preizkušance premera D, zajema tudi normalizirane krivulje geometrično podobnih preizkušancev večjih dimenzij (slednje predstavljajo različno dolge segmente izvirne krivulje, veljavne za majhne preizkušance premera D). Lomno žilavost $K_{\rm Ic}$ je nato Chang⁹⁰ določil iz normalizirane krivulje ob sočasnem upoštevanju koncepta ekvivalentne energije.

Merjenje lomne žilavosti K_{lc} s cilindričnimi preizkušanci z obodno zarezo in utrujenostno razpoko v korenu zareze zahteva – tako kot tudi sicer pri drugih vrstah preizkušancev – zvezno ugotavljanje natezne obremenitve v odvisnosti od relativnega odpiranja ustja zareze (*relative displacement across the open end of the notch*), ki je premo sorazmerno napredovanju predhodno iniciirane utrujenostne razpoke v korenu zareze. Najprej je torej treba narediti utrujenostno razpoko. Ne glede na to, s kakšnim obremenitvenim režimom jo naredimo, uporabljeni maksimalni faktor intenzitete napetosti K_{max} pri utrujanju ne sme preseči 70 % vrednosti najmanjše pričakovane lomne žilavosti K_{Ic} ⁹¹. Z enačbo (78) dobimo za $K_{\text{maks}}/(\text{MPa m}^{1/2})$:

$$K_{\text{maks}} = 0.7 \ K_{\text{Ic}} = 0.7 \ \sqrt{\frac{D}{1.5}} \ R_{\text{p0,2 app}}$$
 (80)

pri čemer približno napetost tečenja $R_{p0,2 app}/(MPa)$ lahko določimo kar iz trdote kovinskega materiala po formuli v ustreznem standardu⁹². To je na primer koristno pri merjenju lomne žilavosti strukturno heterogenega kovinskega materiala (cona varjenega spoja). Stark in Ibrahim⁹³ sta ugotovila, da bo sipanje rezultatov pri merjenju lomne žilavosti majhno, če bo globina utrujenostne razpoke dosegla vsaj dvojno vrednost velikosti plastične one r_y .

Kar zadeva režim obremenjevanja pri utrujanju cilindričnega preizkušanca z obodno zarezo, sta Stark in Ibrahim⁹³ ugotovila tudi, da je vrtilno-upogibni režim obremenjevanje najenostavnejši in najprimernejši način izdelave utrujenostne razpoke v korenu zareze cilindričnega preizkušanca (za izdelavo razpoke v nateznem režimu potrebujemo pulzator) z majhno ekscentričnostjo. Pritrdila pa sta tudi Liju in Bakkerju⁷⁶, da je namreč pri cilindričnih nateznih preizkušancih z obodno zarezo, ki je sklenjena sama v sebi, doseženo ravninsko deformacijsko stanje že pri manjših debelinah, kot pa je to pri preizkušancih standardne geometrije. Avtor tega pregleda s sodelavci77 je ugotovil, da je pri izdelavi utrujenostne razpoke v vrtilno upogibnem režimu dosežena manjša ekscentričnost ligamenta preizkušanca, kot pa pri izdelavi razpoke v nateznem režimu, pri čemer pa gre za ekscentričnost dveh vrst; bodisi za ekscentričnost zaradi eliptičnosti ligamenta, bodisi za ekscentričnost zaradi zamika središča ligamenta iz aksialne osi preizkušanca, kot je to prikazano na sliki 15. Ekscentričnost e, ki zadovoljivo zajame oba vpliva, lahko izrazimo z enačbo⁹³:

$$e = \frac{Q - N}{N} \tag{81}$$

pri čemer je N = D/d in $Q = D/(2d - d_n + 2p)$. Premer d je srednja vrednost premerov d_1 in d_2 eliptičnega ligamenta, to je frakturne površine preizkušanca po merjenju lomne žilavosti, d_n je polmer preizkušanca ob zarezi, p pa je najkrajša razdalja med robom frakturne površine in korenom zareze. V primeru Q = N je seveda e = 0.

Frakturna površina preizkušanca z utrujenostno razpoko v korenu zareze, narejeno v vrtilno-upogibnem režimu obremenjevanja, je prikazana na **sliki 16**. S takšne slike po končanem merjenju lomne žilavosti izmerimo potrebne parametre ter z enačbo (81) izračunamo ekscentričnost *e*. Če je ta ekscentričnost manjša od 0,015, je merjenje lomne žilavosti veljavno, večja ekscentričnost pa vodi k podcenjenju lomne žilavosti.

Slika 15: Geometrijski parametri prelomne površine cilindričnega preizkušanca z obodno zarezo in utrujenostno razpoko v dnu zareze⁷⁷ **Slika 15:** Geometric parameters of fracture surface of a circumferentially notched specimen with a fatigue crack in the bottom of the notch⁷⁷

Podobna korekcija je smiselna tudi, če pri merjenju lomne žilavosti razpoka ni napredovala iz vrha utrujenostne razpoke, pač pa iz šibkega strukturnega mesta blizu vrha, na primer iz karbidnega skupka, kot je to prikazano na **sliki 17**. Analiza je pokazala⁷⁷, da so izmerjene lomne žilavosti v takšnem primeru nekoliko precenjene in je zato potrebna njihova korekcija.

Kar zadeva zvezno spremljanje natezne obremenitve v odvisnosti od odpiranja ustja zareze, to je diagrama obremenitev-pomik v liniji delovanja obremenitve *lload-load line displacement (F-LLD) diagram/*, kaže opomniti, da je pri cilindričnih nateznih preizkušancih s cilindrično obodno zarezo in razpoko v korenu zareze težko meriti veljaven pomik ustja zareze z mehanskimi napravami. Odpiranje ustja zareze na eni strani preiz-

Slika 16: SEM-posnetek tipične prelomne površine cilindričnega nateznega preizkušanca s krožnim področjem napredovanja utrujenostne razpoke, ki je ostro ločeno od osrednjega, naglo zlomljenega dela preizkušanca⁷⁷

Slika 16: SEM image of the typical fracture surface of a round notched tensile specimen with a ring-shaped fatigue crack propagation area, which is sharply separated from the central, instantly fractured area⁷⁷

Slika 17: Prelomna površina preizkušanca s krožnim področjem utrujenostne razpoke in odločilnim mestom nukleacije razpoke (označenem s puščico), ki se ne sklada s čelom utrujenostne razpoke⁷⁷ **Figure 17:** Fracture surface of specimen with a ring-shaped, fatigued area and a main crack nucleation site (shown by arrow) which does not coincide with the fatigue crack frontline⁷⁷

kušanca lahko spremlja njegovo zapiranje na drugi strani, zaradi lokaliziranega napredovanja razpoke. Razpoka namreč praviloma ne prične napredovati sočasno po celotnem obodu preizkušanca. Za spremljanje pomikov so na voljo druge metode. Wei s sodelavci⁸⁹ je na primer meril pomik s posebnimi zelo majhnimi ekstenzometri v kombinaciji z akustično emisijo in merjenjem električnega potenciala ob zarezi. Merjenje električnega potenciala oziroma njegovo spreminjanje zaradi napredovanja razpoke sta uporabila tudi Li in Baker⁷⁶, in to že v fazi izdelave utrujenostne razpoke.

Pri razmeroma krhkih materialih, ko je makroskopsko vedenje vse do nenadnega loma preizkušanca izrazito linearno elastično, pa lahko z zadovoljivo natančnostjo ugotavljamo kar obremenitev v odvisnosti od pomika čeljusti nateznega trgalnega stroja. Ta pomik pa je seveda manj selektiven od tistega v ustju zareze.

Leskovšek s sedelavci94 je na ta način izmeril lomno žilavost hitroreznega jekla BRM2 s trdoto HRc med 65 in 58 ter dobil vrednosti $K_{\rm Ic}$ 10–15 MPa m^{1/2}, kar se dokaj dobro ujema s podatki Hortona95, ki je pri enakem jeklu s trdoto HRc 64 izmeril lomno žilavost K_{Ic} okoli 16 MPa m^{1/2}. Eriksson⁹⁶, ki je lomno žilavost meril s standardnimi CT-preizkušanci je pri enakem jeklu (AISI M2) s trdoto 66 HRc nameril 12,5 MPa m^{1/2}, Berry s sodelavci97, ki je tudi meril s CT preizkušanci pa 15-20 MPa m^{1/2} pri trdotah HV40 870-680 (HRc 66-59). Poudariti pa je treba, da je Leskovšek94 korigiral izmerjene vrednosti navzdol za 10 % do 20 % zaradi vpliva ekscentričnosti in zaradi pojavljanja šibkega mesta na frakturnih površinah preizkušancev. Brez teh korekcij bi bile izmerjene vrednosti popolnoma enake onim, ki so jih izmerili drugi raziskovalci s standardnimi metodami95-97.

Gliha s sodelavci^{98,99} je z enako metodo, torej s cilindričnimi preizkušanci z obodno zarezo in utrujenostno

Slika 18: Dve vrsti *F-LLD*-diagramov pri kvazistatičnem aksialnem obremenjevanju cilindričnih preizkušancev z razpoko: (a) dovolj linearno, (b) ne dovolj linearno⁹⁹

Figure 18: Two types of recorded *F-LLD* diagrams using quasi-static axial loading of precracked cylindrical specimens: (a) sufficiently linear; (b) insuficiently linear⁹⁹

razpoko v korenu zareze, meril lomno žilavost $K_{\rm lc}$ mikrolegiranega jekla Niomol (z mikrostrukturo, kakršno imajo toplotno vplivane cone varov tega jekla) v območju temperatur prehoda v krhko stanje, to je med -80 °C in +20 °C. Za primerjavo je lomno žilavost meril še po standardni metodi s tritočkovnim upogibom (*precracked Three-Point-Bend Specimens*). Pri merjenju s

Slika 19: Privzetek ekvivalentne energije pri lomu ob uporabi nelinearnih in idealno linearnih lomnomehanskih eksperimentov⁹⁹ **Figure 19:** Assumption of energy equivalence at fracture using non-linear and ideally linear fracture mechanics experiments⁹⁹

cilindričnimi nateznimi preizkušanci z obodno zarezo in razpoko v korenu zareze je z merjenjem obremenitve F v odvisnosti od pomika v smeri obremenitve LLD (LLD load-line displacement) dobil dve vrsti diagramov obremenitev-pomik, prikazanih na sliki 18. Linearnost diagramov F-LLD je preveril skladno s standardi^{91,100}, pogojno kritično obremenitev F_0 pa je določil bodisi kot lomno obremenitev F_c (pri linearnem zapisu; slika 16a), bodisi iz presečišča krivulje F-LLD in sekante s 4 % manjšim naklonom (pri nelinearnem zapisu; slika 16b). Nelinearnost zapisa F-LLD je posledica izoblikovanja velike plastične cone in otopitve vrha razpoke. Gliha98,99 je pri vrednotenju rezultatov uporabil dve metodi korekcije rezultatov. Prva je metoda ekvivalentne energije¹⁰¹, ilustrirana z diagramoma na sliki 19. Pri tej metodi korigiramo lomno obremenitev F_c s privzetkom, da je ploščina S1 pod izmerjeno krivuljo zapisa F-LLD enaka ploščini S_2 pod fiktivnim linearnim zapisom *F-LLD*. Torej je $S_1 = S_2 = S$, pa tudi za naklonski kot tangente iz obeh zapisov izhaja $\alpha_1 = \alpha_1 = \alpha$. Potem je fiktivna kritična obremenitev $F_{\rm E}$:

$$F_{\rm E} = \sqrt{2S \, \mathrm{tg} \, \alpha} \tag{82}$$

posledično pa je večja tudi lomna žilavost K_{Ic} .

Druga metoda korekcije rezultatov, ki jo je uporabil tudi Gliha^{98,99}, pa zajema vpliv velikosti plastične cone. Ta naj bi sicer bila zanemarljivo majhna v primerjavi z velikostjo preizkušancev, vendar temu pogoju ni bilo vedno zadoščeno (premer *d* je bil razmeroma majhen, le od 5 mm do 6 mm). Ko uporabimo metodo korekcije velikosti plastične cone, korigiramo velikost razpoke za velikost plastične cone v trenutku loma¹⁰². Velikost plastične cone določimo z enačbo (79) ter izračunamo nov efektivni neto premer kritičnega prereza d_{eff} po formuli:

$$d_{\rm eff} = d - 2r_{\rm y} \tag{83}$$

Pri cilindričnem preizkušancu moramo od realnega premera d odšteti velikost plastične cone na obeh koncih tega premera, zato se vpliv velikosti plastične cone pri tovrstnih preizkušancih podvaja. Gliha^{98,99} je računal tudi z možnostjo, ko pri merjenju lomne žilavosti ni doseženo popolnoma ravninsko deformacijsko stanje, in je zato v formuli (79) za izračunavanje velikosti plastične cone $r_{\rm v}$ upošteval faktor, ki je bil tudi večji od $1/6\pi$ (v skrajnem primeru popolnoma ravninskega napetostnega stanja doseže ta faktor vrednost celo $1/2\pi$). Gliha¹⁰³ je nazadnje ugotovil, da se izmerjene lomne žilavosti po upoštevanju vseh korekcij in izpolnjevanju pogoja velikosti preizkušancev (78) dokaj dobro približajo pravi lomni žilavosti $K_{\rm Ic}$, če ta le ne presega vrednosti približno 50 MPa m^{1/2}. Brez opisanih korekcij so izmerjene lomne žilavosti podcenjene. Za inženirsko prakso pa so konzervativnejše vrednosti včasih celo koristne.

4 SKLEPI

Prikazan je razvoj uporabe gladkih clindričnih nateznih preizkušancev, cilindričnih preizkušancev z obodno zarezo ter končno še takšnih z utrujenostno razpoko v korenu obodne zareze. V zgodnjem obdobju uporabe gladkih cilindričnih nateznih preizkušancev so se ti uporabljali za določevanje trdnosti pa tudi preoblikovalnosti kovinskih materialov. Tedaj še ni bila razvita mehanika loma, zato preizkušancev z obodno utrujenostno razpoko še niso poznali. Zgodovinsko gledano so se prej pojavili cilindrični natezni preizkušanci z obodno zarezo, vlogo lomne žilavosti pa je prevzela zarezna občutljivost kovinskih materialov. Šele v zadnjih desetletjih so se pričeli za merjenje lomne žilavosti kovinskih materialov uporabljati tudi cilindrični natezni preizkušanci z obodno zarezo in razpoko v korenu zareze. Razvoj pa ni bil premočrten. Celo v obdobju, ko so že bili v uporabi preizkušanci z obodno zarezo in tudi z obodno razpoko, so še vedno tekle intenzivne raziskave uporabe gladkih cilindričnih preizkušancev. Obravnavan je bil na primer Cockcroft-Lathamov kriterij za določanje preoblikovalnosti ter Hahn-Rosenfieldova enačba za določevanje lomne žilavosti kovinskih materialov. S tem je povezanih še nekaj odprtih vprašanj, ki so v tem pregledu tudi navedena. Tako je na primer še neraziskana morebitna vloga specifične energije, absorbirane v osi nateznega preizkušanca, kjer aksialna napetost doseže največjo vrednost v sredini vratu, na lomno žilavost ob zarezi, izračunano z upoštevanjem povprečne specifične energije, absorbirane do loma. Prav tako še ni jasno, če in kakšno vlogo na primer ima polmer pritisnjenega kroga v vratu gladkega nateznega preizkušanca, torej difuznost kontrakcijskega zoženja preizkušanca, na lomno žilavost različnih kovinskih materialov s sicer enakimi lastnostmi, predvsem z enako lomno duktilnostjo.

Kar zadeva vpliv korenskega polmera zareze na izmerjeno navidezno lomno žilavost so stališča v literaturi pogosto kontraverzna. Pregled literature pa vendarle pokaže, da pri merjenju lomne žilavosti s cilindričnimi nateznimi preizkušanci z obodno zarezo le težko lahko govorimo o obstoju makroskopskega mejnega korenskega polmera zareze, namreč polmera pod katerim se izmerjena navidezna lomna žilavost nič več ne spreminja. Nasprotno, zdi se da je takšen polmer, če sploh obstaja, mikrometrskih dimenzij.

Na koncu pregleda smo veliko prostora posvetili merjenju lomne žilavosti s cilindričnimi nateznimi preizkušanci z obodno zarezo in razpoko v dnu zareze. Da bi se izognili ekscentričnosti utrujenostnega področja, uporabljamo pri tovrstnih preizkušancih vrtilno-upogibni režim izdelave utrujenostne razpoke. Zaradi obodne razpoke, ki je sklenjena sama v sebi, je ravninsko deformacijsko stanje doseženo že pri preizkušancih relativno majhnega premera. Odpiranje ustja zareze v liniji delovanja obremenitve je pri preizkušancih z obodno zarezo in razpoko v korenu dokaj zahtevno. Pogosto uporabljamo poenostavljen način merjenja lomne žilavosti, pri katerem merimo naraščanje obremenitve kar v odvisnosti od odmika čeljusti nateznega trgalnega stroja. V takšnem primeru pa moramo dosledno uporabljati ustrezne korekcije izmerjenih vrednosti, namreč korekcijo zaradi velikosti plastične cone ter korekcijo z metodo ekvivalentne energije, ko zapis obremenitev-pomik ni linearen. Brez teh korekcij so izmerjene vrednosti lahko tudi preveč konzervativne. Le pri zelo krhkih materialih, pri katerih lomna žilavost ne preseže 20–30 MPa m^{1/2}, korekcije izmerjenih vrednosti niso potrebne.

Zdi se, da bi bil še kako smiseln razvoj in patentiranje posebnega miniaturnega merilnika pomikov v ustju obodne zareze cilindričnih nateznih preizkušancev, saj bi bilo potem merjenje lomne žilavosti zaradi indikativnejšega zapisa *F-LLD*, mnogo natančnejše. Predlagan merilnik pomikov bi moral biti sestavljen iz dveh skupin po treh rozetno nameščenih uporovnih merilnih lističev na dveh različnih merilnih dolžinah v ustju zareze. Z računalniškim zbiranjem in obdelavo podatkov z obeh skupin merilnih lističev bi takšnen sklop omogočal merjenje relevantnega odpiranja ustja zareze oziroma napredovanja razpoke tudi v primeru, ko ta ne prične napredovanje izrazito lokalizirano, kot je to pri tovrstnih preizkušancih skoraj pravilo.

Opomba avtorja: V tem pregledu uporabljani simboli so pojasnjeni sproti, tako kot se pač pojavljajo v tekstu. Prava napetost in pravi raztezek sta označena s σ in ε , inženirska ali nominalna napetost in inženirski ali nominalni raztezek pa sta označena z oznakama $\sigma_{\rm nom}$ in A, slednja tudi z indeksom. Za inženirski raztezek se sicer v literaturi (in celo v standardu) uporablja oznaka e, vendar sem se rabi te oznake tokrat namenoma izognil, ker so pač karakteristične vrednosti inženirskega raztezka standardno označene z A in z ustreznim indeksom. V tem pregledu pomeni na primer A_{10f} inženirski raztezek ob porušitvi (fracture) pri merilni dolžini 10D₀, da se loči od trenutnega inženirskega raztezka A_{10} pri omenjeni merilni dolžini. Mnenja sem namreč, da bi moral biti inženirski raztezek vedno opremljen še z indeksom, ki označuje izbrano merilno dolžino, saj ta raztezek ni lastnost le materiala. Prav zato se inženirska diagrama $\sigma_{\text{nom}} - A_5$ in $\sigma_{\text{nom}} - A_{10}$ sicer istega materiala med seboj razlikujeta. Za inženirsko, to je nominalno, napetost se v literaturi pogosto uporablja tudi oznaka s (G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1987) vendar pa sem se rabi te oznake spet namenoma izognil, saj bi se sicer lahko v kakšnem izrazu sočasno pojavili kar trije različni simboli za napetost, namreč σ , s in R, pa še opremljeni z indeksi. Dovolj težko je prebaviti že dejstvo, da se zaradi zahtev standardizacije, lahko v kakšnem izrazu pojavita napetosti, ki sta označeni z dvema različnima simboloma, na primer σ_{nom} in R_{m} . Najbrž ni mogoče racionalno pojasniti, zakaj je sploh treba karakteristične vrednosti napetosti

označevati z *R* in z ustreznim indeksom. Indeksi so bili namreč uvedeni prav zato, da z njimi lahko označujemo karakterisične vrednosti neke količine pri nespremenjenem osnovnem simbolu te količine. Za napetost tečenja torej $\sigma_{nom0,2}$ namesto nepotrebnega $R_{0,2}$. Definicije osnovnih pojmov in pripadajočih simbolov pa ostajajo nedodelane celo v standardizaciji zelo razvitih držav. Tovrstne terminološke težave rešuje TC ISO 164, pri katerem pa Slovenija žal ni udeležena niti kot opazovalec (O) niti kot član (P).

5 LITERATURA

- ¹ M. Marinček, Kovine zlitine tehnologije, 28 (1994) 1-2, 31-38
- ²G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1987, 284–286
- ³ P. Ludwik, Elemente der technologischen Mechanik, Julius Springer, Berlin, 1909
- ⁴ J. H. Hollomon, Trans. AIME, 162 (1945), 268-290
- ⁵H. W. Swift, Journal Mech. Phys. Solids, 1 (1952), 1-18
- ⁶ E. Voce, Journal Inst. Met., 74 (1948), 537-562
- ⁷ A. Melander, Scandinavian Journal of Metallurgy 9 (1980), 51–57
- ⁸ J. P. Miles, Journal Mech. Phys. Solids, 19 (**1971**), 98–102
- ⁹ J. W. Hutchinson, J. P. Miles, Journal Mech. Phys. Solids, 22 (1974), 61–71
- ¹⁰ E. W. Hart, Acta Met., 15 (1967), 351–355
- ¹¹ J. J. Jones, B. Baudelet, Acta Met., 25 (1977), 43–50
- ¹² A. K. Ghosh, Acta Met., 25 (**1977**), 1413–1424
- ¹³ J. W. Hutchinson, K. W. Neale, Acta Met., 25 (1977), 839–846
- ¹⁴ U. F. Kocks, J. J. Jonas, H. Mecking, Acta Met., 27 (**1979**), 419–432
- ¹⁵ A. K. Ghosh, Met. Trans. 8A (1977), 1221–1232
- ¹⁶ E. Siebel, Steel, 93 (**1933**), 37
- ¹⁷ P. W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952
- ¹⁸ H. L. D. Pugh, D. Green, Proc. Inst. Mech. Eng., 1 (1964), 179
- ¹⁹ D. J. Latham, Ph. D.. Thesis, Univ. of Birmingham, U. K., 1963
- ²⁰ N. N. Davidenkov, N. I. Spiridonova, Proc. ASTM, 46 (1946), 1147
- ²¹ E. Siebel, S. Schwaigerer, Arch. Eisenhüttenwes., 19 (1948), 145–152
- ²² W. Truszkowski, Deformation of metal at the neck of a strained test piece, Bull. Acad. Pol. Sci. Lett., 1, 1959, 378
- 23 W. H. Chen, Int. Journal for Solids and Structures, 7 (1971), 685-717
- ²⁴ A. Needleman, Journal for Mechanics and Physics of Solids, 20 (1972), 111-717
- ²⁵ D. M. Norris, B. Moran, J. K. Schudder, D. F. Quinones, Journal for Mechanics and Physics of Solids, 26 (1978), 1–17
- ²⁶ M. Saje, Int. J. Solids Structures, 15 (1979), 731-742
- ²⁷ M. G. Cockcroft, Ductility, ASM, Metals Park, Ohio, 1968, 199–226
- ²⁸ M. G. Cockcroft, D. J. Latham, Journal of the Institute of Metals, 96 (1968), 33–39
- ²⁹ P. Brozzo, B. Deluca, R. Rendina, A new method for the prediction of the formability limits of metal sheets, Proceedings of 7th Biennial Congr. of Int. Deep Drawing Research Group 1972 (povzeto po: B. Dood and Y. Bai, Ductile Fracture and Ductility, Academic Press Inc., London 1987, 205)
- ³⁰ M. Oyane, Bull. JSME, 15 (1972), 1507–1513
- ³¹S. E. Clif, Ph. D. Thesis, Univ. of Birmingham, U. K., 1986
- ³² A. L. Hoffmanner, Metal Forming Interrelationship Between Theory and Practice, Plenum Press, New York, 1971, 349–391
- ³³ K. Osakada, J. Koshijima, H. Sekiguchi, Bull. JSME, 24 (1981), 534–539

- ³⁴ R. N. Wright, T. A. Kircher, J. R. Vervlied, Journal of Metals, Oct. (1987), 26–29
- ³⁵ N. L. Dung, O. Mahrenholtz, A Criterion for the Ductile Fracture in Cold Forging, Proseedings of the Second International Conference on Technology of Plasticity, Vol. II, Sutgart, August 1987, 1013–1020
- ³⁶ Z. J. Luo, W. H. Ji, N. C. Guo, X. Y. Xu, Q. S. Xu, Y. Y. Zhang, Journal of Materials Processing Technology, 30 (1992), 31–43
- ³⁷ W. E. Hosford, R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice-Hall, Inc., Englewood Clifs, N. Y., 1983, 44–46
- ³⁸ H. A. Kuhn, P. W. Lee, T. Erturk, Journal of Engineering Materials and Technology, October (**1973**), 213–218
- ³⁹ L. Gillemot, Materialprüfung 3 (**1961**), 330–336
- ⁴⁰ L. F. Gillemot, Engineering Fracture Mechanics, 8 (1976), 239–253
- ⁴¹ F. Gillemot, E. Czoboly, I. Havas, Theoretical and Applied Fracture Mechanics 4 (1985), 39–45
- ⁴²C. W. MacGregor, The tension test., ASTM Proc. 40, 1940, 508
- ⁴³ C. W. MacGregor, Relations between stress and reduction in area for tensile tests of metals. Trans. AIME (Inst. Matels Div.), 124, 1937, 208–226
- ⁴⁴ F. Körber, W. Rohland, Über den Einflub von Legierungszusätzen und Temperaturänderungen auf die Ferfestigung von Metallen, Mitt. K. W. I. Eisenforsch. Düsseldorf 5, 1924, 55–68
- ⁴⁵ I. Havas, H. D. Schulze, K. E. Hagedorn, A. Kochendörfer, Materialpr
 üf. 16 (1974), 11, 349–353
- ⁴⁶C. L. Chow, J. Xu, Theoretical and Applied Fracture Mechanics 3 (**1985**), 185–191
- ⁴⁷ G. C. Sih, Experimental Fracture Mechanics: Strain Energy Density Criterion v ed. G. C. Sih: Experimental Evaluation of Stress Concentration and Stress Intensity Factors, Martin Nijhoff, The Hague, 1981, XVII–LVI
- ⁴⁸ J. C. Radon, E. Czoboly, Material toughness vs. specific fracture work, Int. Conf. on Fracture, Kyoto, 1971, 543–557
- ⁴⁹ G. T. Hahn, A. R. Rosenfield, Sources of Fracture Toughness-The relation between K_{IC} and the ordinary Tensile Properties of Metals, Application Related Phenomena in Titanium Alloys, ASTM SRP 432, Philadelphia, 1968, 5–32
- ⁵⁰ G. G. Garret, J. F. Knott, Metallurgical Transactions A, 9A (1978), 1187–1201
- ⁵¹ M. Jansen, J. Zuidem, R. J. Wanhill, Fracture Mechanics, Delft University press, 2002, 331–333
- ⁵² F. A. McClintock, J. Applied Mech., Trans. ASME Series E, 35, 1968, 363–371
- ⁵³ J. N. Robinson, A. S. Tetelman, The Determination of K_{Ic} Values fro Measurements of the Critical crack Tip Opening Displacement at Fracture Initiation, Paper II-421, Third International Conference on Fracture, München, 1973
- ⁵⁴ B. Ule, F. Vodopivec, L. Vehovar, J. Žvokelj, L. Kosec, Materials Science and Technology, 9 (**1993**), 1009–1013
- ⁵⁵ H. K. Schwalbe, Engineering Fracture Mechanics, 9 (**1977**), 795–832
- ⁵⁶ Standard Method of Sharp-Notch Tension Testing of High-Strength Sheet Material, ASTM E338-68, 1968, 847–854
- ⁵⁷ J. D. Lubahn, Trans. ASME, 79, (**1957**), 111–115
- ⁵⁸ J. G. Kaufman, E. W. Johnson, Proc., Am. Soc. Test. Mater., 62 (1962), 778–793
- ⁵⁹ S. Kang, N. J. Grant v T. H. Sanders and E. A. Starke, Jr. (eds.), Proc. 2nd Int. Al-Li Conf., Monterey, CA, April 12–14, 1983, Metalurgical Society of AIME, Warrendale, PA, 1984, 469
- ⁶⁰ H. G. Paris, F. R. Billman, W. S. Cebulak, J. L. Petit, Proc. 2nd Int. Conf. on Rapid Solidification Processing: Principles and Technologies, Reston, VA, March 23–26, 1980, Claitor's Publishing Division, Baton Rouge, LA, 1980, 331
- ⁶¹ T. H. Sanders, Jr., Factors influencing fracture toughness and other properties of Al-Li alloys, Final Rep., June 14, 1979 (Naval Air Development Center Contract N62269-76-C-0271)

- ⁶² H. Tada, P. Paris, G. Irwin, The Stress Analysis of Cracks handbook, Del research Corporation, Hellertown, PA, 1973, 2.6–2.7
- ⁶³ S. Kang, N. J. Grant, Materials Science and Engineering 72, (1985), 155–162
- ⁶⁴ T. Konkoly, The notch toughness of weld metal measured by the specific fracture work, and its proposed numerical consideration in the evaluation of weld defects. IIW/IIS Doc. X-650-71
- 65 T. Konkoly, Materialprüfung 12 (1970), 348-350
- ⁶⁶ L. Gillemot, E. Czoboly, Generalized theory of fracture, Proc. of II Symposium on Fracture, Marianske-Lazne, 1970
- ⁶⁷ E. Czoboly, J. C. Radon, Eine neue Methode zur Bestimmung der bruchmechanischen Werkstoffenngröße K_{Ic}, Vorträge vom V. Kongr. für Metarialprüf., Sektion I., Budapest 1970, 97–103
- 68 A. Bayram, A. Uguz, M. Ula, Mater. Charact., 43 (1999), 259-269
- 69 A. Bayram, A. Uguz, Metall., 53 (1999) 9, 486-489
- ⁷⁰ A. Bayram, A. Uguz, A. Durmus, Journal of Mater. Eng. and Performance, 11 (**2002**) 5, 571–576
- ⁷¹ K. Kobayashi, H. Imada, T. Majima, JSME Int. J. A.-Solid M., 41 (**1998**), 218–224
- ⁷² J. R. Donoso, F. Labbe, H. Argomedo, Eng. Fract. Mech., 54 (1996), 617–628
- 73 J. Toribio, Eng. Fract. Mech., 57 (1997), 391-404
- ⁷⁴ D. B. Lanning, G. K. Haritos, T. Nicholas, Int. J. Fatigue, 21(Suppl. S) (**1999**), S87–S95
- ⁷⁵ A. Valiente, J. Lapena, Nucl. Eng. Des. 167 (1996) 1, 11–12
- ⁷⁶ D. M. Li, A. Bakker, Eng. Fract. Mech., 57 (1997), 1–11
- ⁷⁷ B. Ule, V. Leskovšek, B. Tuma, Eng. Fract. Mech., 65 (2000), 559–572
- ⁷⁸ P. C. Paris, G. C. Sih, Stress Analysis of Cracks v ASTM STP, No. 381, American Society for Testing and Materials, Philadelphia, PA, 1965, 30–83
- ⁷⁹ M. A. N. Shabara, A. A. El-Domiaty, M. D. Al-Ansary: Eng. Fract. Mech., 54, (1996), 533–541
- ⁸⁰G. R. Irwin, ASME J. Appl. Mech. 24 (1957), 361-364
- ⁸¹ J. P. Benthem, W. T. Koiter, Asymptotic approximations to crack problems, v Method of Analysis and Solution of crack Problem (Ed. by G. C. Sih), 3, Nordhoff, 1973, 131
- ⁸² H. Nisitani, H. Noguchi, H. Uchihori, H. Nakae, JSME Int. J. Series 1, 32 (**1989**), 439–443
- ⁸³ R. E. Swanson, A. W. Thompson, I. M. Bernsten, Metall. Trans. 17A, (**1986**), 1633–1637

- ⁸⁴ R. O. Ritchi, R. M. Horn, Metall. Trans. A, 9A (1978), 331-341
- ⁸⁵ J. R. Donoso, F. Labbe, H. A. Argomedo, Eng. Fract. Mech., 54 (1996), 617–628
- ⁸⁶ M. Veidt, H. J. Schindler, Eng. Fract. Mech., 58, (1997) 3, 223–231
- ⁸⁷O. Akkouri, M. Louah, A. Kifani, G. Giger, G. Pluvinage, Eng. Fract. Mech., 65 (**2000**), 491–505
- ⁸⁸ Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, I, 1987
- ⁸⁹ S. Wei, Z. Tingshi, G. Daxing, L. Dunkang, L. Poliang, Q. Xiaoyun, Eng. Fract. Mech., 16, (**1982**) 1, 69–82
- 90 W. Chang, Eng. Fract. Mech., 28, (1987) 3, 241–250
- ⁹¹ ASTM E 399-90: Standard test method for plane-strain fracture toughness of metallic materials. The American Society for Testing and Materials, 1997
- ⁹² BS 7448-2: Fracture mechanics toughness test, Part 2. Method for determination of $K_{\rm Ic}$, critical CTOD and critical J values of welds in metallic materials. British Standard Institution, London 1997
- ⁹³ B. Tuma, Diplomska naloga na FNT, Oddelek za materiale in metalurgijo Univerze v Ljubljani, Ljubljana, 1997, 15–22
- ⁹⁴ V. Leskovšek, B. Ule, B. Liščič, Steel Research, 8, (2000) 71, 310–315
- ⁹⁵ S. A. Horton, The Relationship of Segregation Structure and Properties in High Speed Steels, Birmingham, 1980 (Ph. D. thesis)
- ⁹⁶ K. Eriksson, Scandinavian Journal of Metallurgy, 2, (**1973**), 197–203
- ⁹⁷G. Berry, M. J. Kadhim Al-Tornachi, Metals Technology, 1977, 289–295
- ⁹⁸ V. Gliha, T. Vuherer, B. Pučko, B. Ule, J. Vojvodič-Tuma, Materials na Manufacturing Processes, 19, (2004) 2, 139–157
- ⁹⁹ V. Gliha, T. Vuherer, B. Ule, J. Vojvodič-Tuma, Science and Technology of Welding and Joining, 9, (2004) 5, 399–406
- ¹⁰⁰BS 7448-1: Fracture mechanics toughness test, Part 1. Method for determination of K_{1c}, critical CTOD and critical J values of metalic materials. British Standard Institution, London, 1991
- ¹⁰¹ASTM E 992-84: Standard practice for determination of fracture toughness of steel using equivalent energy methodology, The American Society for Testing and Materials, 1989
- ¹⁰²K. H. Schwalbe, Bruchmechanik metallisher Werkstoffe, Carl Hanser Verlag, 1980
- ¹⁰³V. Gliha, T. Vuherer, B. Ule, J. Vojvodič-Tuma, Mater. tehnol. 34 (2000) 6, 371–374