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In this work are given new paradoxes and fallacies discovered in the theory of balancing chemical reactions. All the
counterexamples showed that so–called »chemical procedures« of balancing chemical reactions given in earlier chemical
literature are inconsistent. Balancing chemical reactions is a mathematical procedure independent of chemistry. In order to avoid
the appearance of paradoxes, chemical reactions must be considered as a formal system founded by virtue of well–defined
mathematical model. The results obtained in this work affirmed that the usage of traditional ways of balancing chemical
reactions is limited. They may be used only for balancing some elementary chemical equations. In other words, foundation of
chemistry looks for a new approach of balancing chemical reactions, which must be completely different than current »chemical
procedures«. This work is a collection and analysis of some paradoxes and fallacies which appeared in the theory of balancing
chemical reactions.
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Predstavljeni so novi paradoksi in zmote, odkrite v teoriji uravnote`enje kemijskih reakcij. Vsi protiprimeri so pokazali, da so
tako nekonsistentne tako imenovane kemijske procedure uravnote`enja kemijskih reakcij, navedene v zgodnjih virih.
Uravnote`enje kemijskih reakcij je matemati~na procedura, neodvisna od kemije. Da bi se izognili nastajanju paradoksov, je
treba kemijske reakcije formulirati kot formalen sistem na podlagi dobro definiranega matemati~nega modela. Rezultati v tem
delu potrjujejo, da je uporaba tradicionalnih na~inov uravnote`enja kemijskih reakcij omejena. Uporabljamo jo le za
uravnote`enje nekaterih elementarnih kemijskih reakcij. Z drugih besedami, temelj kemije i{~e nove pribli`ke za uravnote`enje
kemijskih reakcij, ki se morajo razlikovati od sedanjih kemijskih procedur. To delo je izbor in analiza nekaterih paradoksov in
zmote, ki so se pojavile v teoriji uravnote`enja kemijskih reakcij.

Klju~ne besede: kemijske reakcije, paradoksi, uravnote`enje, zmote

1 INTRODUCTION

In this section we shall discuss the balancing of
chemical reactions from scientific viewpoint. It is an es-
sential precondition for better understanding of our dis-
course about paradoxes connected with traditional ways
of balancing chemical reactions.

Before opening this discussion about balancing
chemical reactions, we would like to give a few remarks
about the name of so–called course »general chemistry«.
Why? The reply is very simple, because this course
treats the balancing of chemical reactions as its subject.
At the beginning of our exposition we want to say that
the name »general chemistry« is not appropriately cho-
sen. Generally speaking, »general chemistry« does not
exist, and on top of all it is not possible to exist, because
the principles of this particular chemistry are weak and
do not hold for all parts of chemistry. They have only
particular meaning and nothing more. In other words, it
means that its principles are not general. This is just one
thing. Another thing, chemistry is founded by virtue of

mathematical principles, but also there not exists »gen-
eral mathematics« and speaking more accurately it is not
possible to exist.

For instance, in mathematical logic in the 20th cen-
tury lots of paradoxes were discovered,1 and mathemati-
cians thought that only there are possible antinomies and
that other parts of mathematics are in safety. Reality
showed that it is not true. In mathematical analysis lots
of counterexamples were found.2,3 Also certain
counterexamples were found in probability & statistics.3,

4 In topology as a contemporary mathematical discipline
a great number of counterexamples were detected too.5 It
does not mean that other mathematical disciplines are
without contradictions. No! Just the opposite, in almost
all the branches of mathematics different kinds of
counterexamples are detected6. These facts show that
mathematical principles are not general, i. e., they hold
only in certain part of mathematics. These are the causes
why there is not »general mathematics«. If we take into
account the fact that chemical reaction is a basic issue in
chemistry and according to its definition (see: Definition
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2.2, in the section 2), then it follows that chemistry is
founded on mathematical principles. If there is not »gen-
eral mathematics«, then how is possible to exist »general
chemistry«? Simply speaking, it is impossible!

In order to correct this irrational name of chemistry,
it is necessary to choose an appropriate name which will
be more suitable for that particular chemistry. For exam-
ple, the names basic chemistry and elementary chemistry
fit for that chemistry.

In chemical as well as mathematical journals there
are lots of published papers which treat the problem of
balancing chemical reactions. Specially, in chemical
journals are considered many different so–called »chemi-
cal ways« for balancing chemical reactions, but unfortu-
nately all of them offer only particular procedures for
balancing of some simple chemical reactions. These
»chemical ways« very often have negative consequences
for chemistry. For instance, they produce fallacies or ab-
surd results, because most of them work on erroneous
principles, but not on true principles.

Balancing chemical reactions is not a simple proce-
dure as some traditionally oriented chemists think or as
they want to be. In7 the author emphasized very clearly,
that balancing chemical reactions is not chemistry; it is
just linear algebra.

Balancing chemical reactions is a basic matter of
chemistry, if not one of its most important issues, and it
plays a main role in its foundation. Indeed, it is a subtle
question, which deserves considerable attention.

This topic has always excited nature as deeply as no
other question in chemistry. The balancing of chemical
reactions has acted upon human mind in such stimulating
and fruitful way as hardly any other idea, but also this
subject needs an explanation as no other concept.

The concept of balancing chemical reactions in
chemistry is tracked and transformed from traditionalism
to intuitionism in the 19th century, from intuitionism to
irrationalism in the first half of 20th century, from
irrationalism to particularism in the second half of 20th

century, while the particularism is sharpened by
Moore–Penrose matrix8, 9 concept into generalism and
transformed into formalism, which takes on the status of
a paradigm in the 21st century.

To the question of balancing chemical reactions the
mathematicians, chemists and computer engineers with
different conceptions will not always give the same an-
swer. A mathematician, a chemist and a computer engi-
neer will answer each in a different way. Some of them
will admit that perhaps the others are right in a certain
sense and will try to reinterpret the others’ procedures in
their own language. But in general everyone, more or
less, will remain convinced that, in fact, still only he is
right.

Since chemistry is not immune from contradictions,
also we found several absurd results there when balanc-
ing chemical reactions. In this work only just these ab-
surd contradictions are studied.

Sometimes the mistakes in reasoning come because
our experience with one situation causes us to assume
that the same reasoning will hold true in a related but dif-
ferent situation. This kind of mistake can occur at a very
simple level or at a more complex one. At a simple level,
the most common conclusion is that we know that we
have to reject the reasoning, although it may be difficult
to say why. At the more complex level, we may conclude
that the reasoning must be accepted even when the re-
sults seem to contradict our notion of how the real world
works.

Scientific research and experience have shown, when
the results of reasoning and mathematics conflict with
experience, then there is probably a fallacy of some sort
involved10.

In the literature11–13 there are a great number of defi-
nitions for fallacy, but we shall mention merely few of
them. For us is important only deductive fallacy. A de-
ductive fallacy is a deductive reason that is illogical.

In philosophy, the term logical fallacy suitably refers
to a formal fallacy. It is defined as a defect in the struc-
ture of deductive reason, which makes the reason invalid.
Most textbooks echo the standard treatment of fallacy, as
a reason, which seems to be valid but is not so14. Accord-
ing to Maxwell15, a fallacy leads by guile to a wrong but
plausible conclusion.

In mathematics the word fallacy could also refer to a
truthful result obtained by wrong reasoning.

In looking at wrong thinking about easy ideas, we
found some cases in which reasoning about balancing
chemical equations is wrong.

As long as we cannot recognize what the fallacy is,
the situation is a paradox. In some cases, as we shall see,
the paradox is entirely inside chemistry. For most para-
doxes that are inside chemistry, elimination of the falla-
cious reasoning produces a purified chemistry that is a
better description of the real chemistry than the contami-
nated chemistry was.

In philosophy there is a bunch of different definitions
of paradoxes.

According to Sainsbury,16 a paradox is an apparently
unacceptable conclusion derived by apparently accept-
able reasoning from apparently acceptable premises.
Rescher17 defines a paradox as a set of propositions that
are individually plausible but collectively inconsistent.
Chihara18 provides a similar definition: a paradox is an
argument that begins with premises that appear to be
clearly true, that proceeds according to inference rules
that appear to be valid, but ends in contradiction.
Quine19, for example, offers the following definition (us-
ing the term antinomy, instead of a paradox): An
antinomy produces a self–contradiction by accepted
ways of reasoning. It establishes that some tacit and
trusted pattern of reasoning must be made explicit and
hence–forward be avoided or revised. In similar spirit,
Koons20 defines paradox as an inconsistency among
nearly nonrevisable principles that can be resolved only
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by recognizing some essential limitation of thought or
language.

In the next section we shall consider the paradoxes
which appeared in different parts of chemistry.

2 PRELIMINARIES

The word paradox in professional works has almost
the same meaning as the word contradiction. Chemistry
as other natural sciences is not immune of paradoxes.
Unlike other natural sciences, in chemistry paradoxes ap-
peared some time later, and it has some of them, while
other sciences are overfull of such contradictions.

Now, we shall mention the well–known paradoxes in
chemistry. They are:
� The Prussian blue paradox:21 The reaction between

ferric and ferrocyanide ions to form Prussian blue and
ferrous and ferricyanide ions to form Turnbull’s blue are
profoundly influenced by the occurrence of the ionic re-
dox equilibrium:

Fe+3 + [Fe(CN)6]
–4 L Fe+2 + [Fe(CN)6]

–3,

which is largely displaced toward the right.
� Feigl’s paradoxes:22

• Hydrogen peroxide as a reducing agent (Oxidizing
agents undergo mutual reduction)

2 KMnO4 + 3 H2O2 � 2 KOH
+ 2 MnO2 + 2 H2O + 3 O2,

NaOCl + H2O2 � NaCl + H2O + O2,

2 [Fe(CN)6]
–3 + H2O2 + 2 OH–

� 2 [Fe(CN)6]
–4 + 2 H2O + O2,

Au+3 + 3 H2O2 + 6 OH–

� 6 H2O + 3 O2 + Au.

• Sulfurous acid brings about oxidations

H2SO3 + 2 H2S � 3 H2O + 3 S,

or

SO2 + 2 H2S � 2 H2O + 3 S,

or

2 Ni(OH)2 + SO2·O2 � NiSO4 + Ni(OH)4.

• Nitric acid is not an oxidant

HNO2 + 3 HN3 � 2 H2O + 5 N2.

• Oxidation of aluminum at room temperature

3 HgCl2 + 2 Al � 2 AlCl3 + 3 Hg,

3 HgI2 + 2 Al � 2 AlI3 + 3 Hg,

3 HgS + 2 Al � Al2S3 + 3 Hg.

• Nonvolatile oxides of tin and antimony are made to
disappear by heating them with a volatile compound

SnO2 + 4 HI � SnI4 + 2 H2O.

• An acid sets a base free from a salt

H3BO3 + 4 KF � KBF4 + 3 KOH.

• Permanganate is not capable of oxidizing oxalic acid

5 H2C2O4 + 2 KMnO4 + 3 H2SO4

� 2 MnSO4 + 10 CO2 + K2SO4 + 8 H2O.

• Ammonium polysulfide brings about an oxidation

SnS + (NH4)2S2 � (NH4)2SnS3.

(NH4)2SnS3 + 2HCl � 2 NH4Cl
+ H2S + SnS2.

� Levinthal’s paradox:23 The length of time in which
a protein chain finds its folded state is many orders of
magnitude shorter than it would be if it freely searched
all possible configurations.
� Quantum chemistry paradoxes:24

• Preponderant configurations.
• Relevant symmetry.
• Watson effect.
• High ionization energies of the partly filled shells.
• Continua of penultimate ionization.
• Continua of translational energy.
• Questions of time–scale.
• Quantum mechanics pretends to be valid for other

systems than electrons.
• Assembly properties and repeated small entities.
� Campbell’s paradoxes:25

• A catalyst is a substance which increases the rate of a
reaction without entering into it.

• System tends to a minimum in potential energy.
• The entropy of a shuffled deck of cards is greater

than that of a new deck.
• Energy is the ability to do work.
� Paradoxes of spin–pairing energy in gadolinium

(III)26: The spin–pairing parameter D = 9E1/8 for 4f q

separates the averages of all states (S0) and (S0-1) to the
extent 2DS0 where Gd+3 has D = 0.80 eV. Hartree–Fock
(flexible radial functions) have previously been per-
formed for each of the four S, producing a value of D =
1.09 eV but the contributions to D from kinetic energy T,
electron–nuclear attraction Q, and interelectronic repul-
sion C with ratios – 1:6:(– 4) distributed Tc (3.5), Tf (–
4.5), Qc (– 7), Qf (13), Ccc (3.5), Ccf (– 7.9), Cff (0.4) in-
dexed c (closed nl shells) and f (4f). Pragmatic D = 0.80
eV corresponds to 1.84 times the calculated contribution
from Cff and to – 0.184 times the sum of C integrals. Ad-
ditional complications are expected from the correlation
energy –100 eV.
� Structure–Activity Relationship (SAR) paradox27:

Exceptions to the principle that a small change in a mol-
ecule causes a small change in its chemical behavior are
frequently profound.
� Helium paradoxes:28 The relatively high 4He/21Ne,

3He/22Ne and 4He/CO2 ratios in midocean ridge basalts
suggest that it is the midocean ridge basalt reservoir that
is He–rich and that the high ratio 3He/4He in midocean
ridge basalts is due to excess 4He, not a deficit in the
šprimordial’ isotope 3He.
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� Temperature dependence of �G° and the equilib-
rium constant Keq:29 The sign of �S° determines the tem-
perature dependence of �G°, it is �H° that is responsi-
ble for the shift in Keq with temperature.
� The q/T paradox:30 Which šcontains more heat’, a

cup of coffee at 95 °C or a liter of icewater?
� pH paradox:31 pH � – lg[H+].
� Parrondo’s paradox32: A mathematical concept

known as Parrondo’s paradox is the unexpected situation
in which two specific losing strategies can, by alternat-
ing between them, produce a winning outcome.
� Parrondo’s paradox motivated the development of

many new computational models of chemical systems, in
which thermal cycling problem is studied.33 By these ki-
netics systems compare the rates of formation of prod-
ucts under temperature–cycling and steady–state condi-
tions. Also, these computational models of thermal
cycling announce new applications in chemistry, bio-
chemistry and chemical engineering. More essentially,
by these models one obtains knowledge that some simple
chemical systems might behave paradoxically, and that
forced oscillating conditions may induce an outcome.

However, these paradoxes are not alone and there are
more which appears in the theory of balancing of chemi-
cal equations. Just these paradoxes are main research ob-
ject in this work.

3 A NEW CHEMICAL FORMAL SYSTEM

Chemists must introduce a whole set of auxiliary def-
initions to make the chemistry work consistently. The
more abstract the theory is, the stronger the cognitive
power is.

What does it mean a chemical equation? The reply of
this question lies in the following descriptive definition
given in a compact form.

Definition 2.1. Chemical equation is a numerical
quantification of a chemical reaction.

Let X be a finite set of molecules.
Definition 2.2. A chemical reaction on X is a pair of

formal linear combinations of elements of X , such that

�: a x b yij
j

r

j ij
j

s

j
= =

∑ ∑→
1 1

(1 � i � m) (2.1)

with aij, bij � 0.
The coefficients xj, yj satisfy three basic principles

(corresponding to a closed input–output static model)
• the law of conservation of atoms,
• the law of conservation of mass, and
• the reaction time–independence.

Definition 2.3. Each chemical reaction � has a do-
main

Dom� = {x � X � aij > 0} (2.2)

Definition 2.4. Each chemical reaction � has an im-
age

Im� = {y � X � bij > 0} (2.3)

Definition 2.5. Chemical reaction � is generated for
some x � X, if both aij > 0 and bij > 0.

Definition 2.6. For the case as the previous defini-
tion, we say x is a generator of �.

Definition 2.7. The set of generators of � is thus
Dom� 	 Im�.

Often chemical reactions are modeled like pairs of
multisets, corresponding to integer stoichiometric con-
stants.

Definition 2.8. A stoichiometrical space is a pair (X ,
R ), where R is a set of chemical reactions on X . It
may be symbolized by an arc–weighted bipartite directed
graph G(X , R) with vertex set X 
 R , arcs x � � with
weight aij if aij > 0, and arcs � � y with weight bij if bij >
0.

Let us now consider an arbitrary subset A � X .
Definition 2.9. A chemical reaction � may take place

in a reaction combination composed of the molecules in
A if and only if Dom� � X .

Definition 2.10. The collection of all feasible reac-
tions in the stoichiometrical space (X , R), that can start
from A is given by

R A = {� � R � Dom� � A }. (2.4)

In34 is proved the following proposition.
Proposition 2.11. Any chemical equation may be

presented in this form

x yj
j

r

aij
i

i

m

j
j

s

bij
i

i

m

= = = =
∑ ∏ ∑ ∏=

1 1 1 1
Y W (2.5)

where xj (1 � j � r) and yj (1 � j � s) are unknown ra-
tional coefficients, Yi and Wi (1 � i � m) are chemical
elements in reactants and products, respectively, aij (1
� i � m; 1 � j � r) and bij (1 � i � m; 1 � j � s) are
numbers of atoms of elements Yi and Wi, respectively, in
j–th molecule.

Definition 2.12. The nullity of the reaction matrix A
is

nullityA = n – r, (2.6)

where n is the total number of reaction molecules and
by r = rankA the rank of the matrix A is denoted.

Definition 2.13. For any chemical reaction these cri-
teria hold:

1° if nullityA = 0, then the reaction is unfeasible,
2° if nullityA = 1, then the reaction is unique, and
3° if nullityA > 1, then the reaction is non–unique.
We shall define a fallacy in this way.
Definition 2.14. A wrong result attached with a

seemingly logical explanation of why the result is correct
is a fallacy.

A new definition for a paradox should look like this.
Definition 2.15. A paradox is a seemingly true asser-

tion that leads to an inconsistency or a situation, which
resists intuition.
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What does it mean the term non–stoichiometric?
Briefly, it means that a substance may participate in two
different reactions simultaneously, in which case the rel-
ative amounts of two products would bear no fixed ratio
to one another.

According to this, now we can define a non–stoichio-
metric reaction as a real vector space.

Definition 2.16. A non–stoichiometric reaction is a
vector space in which a given set of vector–molecules as
reactants gives final vector–molecules as products whose
molecular proportions are variable in a continuous
sense.

4 NEW PARADOXES AND FALLACIES

In this section we shall present chronologically the
new paradoxes and fallacies, which we discovered in the
theory of balancing chemical reactions.

I. Steinbach gave this statement35: While chemical
equations may balance algebraically, they are not neces-
sarily stoichimetrically exact.

In order to illustrate the above statement, »as the cor-
rect stoichiometric equations«, he »balanced« the fol-
lowing chemical reactions

2 KMnO4 + 5 H2O2 + 4 H2SO4 � 2 KHSO4

+ 2 MnSO4 + 8 H2O + 5 O2, (3.1)

K2Cr2O3 + 5 H2O2 + 5 H2SO4 � 2 KHSO4

+ Cr2(SO4)3 + 9 H2O + 4 O2, (3.2)

NaOBr + H2O2 � NaBr + H2O + O2, (3.3)

KClO + KClO2 � KClO3 + KCl, (3.4)

3 HClO3 � HClO4 + Cl2

+ 2 O2 + H2O, (3.5)

4 KClO3 + 16 HCl � 4 KCl + 7 Cl2

+ 8 H2O + 2 ClO2. (3.6)

He said: Obviously there are an infinite number of so-
lutions for the coefficients. Only a few of the total possi-
ble solutions are given.

Next, he stated: when equations are balanced by ei-
ther the valence–change or the ion–electron methods, the
coefficients obtained are the correct stoichiometric ones.

He finished his article like this: Equations (3.1) ÷
(3.6) have no stoichiometric meaning, and it is doubtful
whether they have any real significance other than that
they contain the short–hand suggestion of the reactants
used and the products obtained. They do, however, have
a definite suggestion that further investigation would be
most desirable. It is by examples such as these that the
wide divergence between the stoichiometric equation and
the actual mechanism of a chemical reaction is so poi-
gnantly revealed.

All the statements mentioned above are paradoxical.
Why these statements are inconsistent will be explained
in the following text.

Now, we shall make a very clean distinction what is
what! The first statement is completely wrong, because
the algebraic method has not any restriction of its usage.
It holds for every chemical reaction, while other
so–called »chemical methods« hold only for some partic-
ular cases.

From the general solution of the reaction (3.1),

x1 KMnO4 + x2 H2O2 + 2x1 H2SO4

� x1 KHSO4 + x1 MnSO4

+ (3x1/2 + x2) H2O + (5x1/4 + x2/2) O2,

(∀x1, x2 � �)

we can see that it is a correct two–parametric stoichio-
metric reaction, but not as stated Steinbach. It is just one
thing. Another thing, he »offered« only a particular so-
lution of (3.1) for x1 = 2 and x2 = 5. Immediately, after
publication of his article35, Hall36 pointed out, the state-
ment for the reaction (3.1) that is a »good« example of
variable coefficients is absolutely wrong. It has been
known to be stoichiometric for many, many years and
was studied by C. F. Schönbein, who found that particu-
lar reaction as expressed by (3.1).

Remark 3.1. Schönbein’s particular solution is ob-
tained under certain experimental conditions and it does
not mean that for other different condition other solu-
tions will not be possible!

Chemical reaction (3.2) is balanced incorrectly! The
coefficients of the above reaction correspond to this
chemical reaction

x1 K2Cr2O7 + x2 H2O2 + 5x1 H2SO4

� 2x1 KHSO4 + x1 Cr2(SO4)3

+ (4x1 + x2) H2O + (3x1 + x2)/2 O2,

(�x1, x2 � �)

for x1 = 1 and x2 = 5. The reaction that is offered by
Hall36

K2Cr2O7 + 3 H2O2 + 5 H2SO4

� 2 KHSO4 + 7 H2O + 3 O2,

is balanced wrongly too!
The general solution of the reaction (3.3) is

x1 NaOBr + x2 H2O2 � x1 NaBr
+ x2 H2O + (x1 + x2)/2 O2, (�x1, x2 � �)

and Steinbach found a particular solution for x1 = x2 = 1.
Again, we had not any limitations with the usage of the
algebraically method. Also, in this case the method
worked perfectly.

Chemical reaction (3.4) has this general solution

x1 KClO + x2 KClO2 � (x1 + 2x2)/3 KClO3

+ (2x1 + x2)/3 KCl, (�x1, x2 � �)

and the above particular solution corresponds for x1 = x2

= 1.
The general solution of the chemical reaction (3.5) is
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x1 HClO3 � x2 HClO4 + (x1 – x2)/2 Cl2

+ (5x1 – 7x2)/4 O2

+ (x1 – x2)/2 H2O, (x1 > 7x2/5) (3.7)

For x1 = 3 and x2 = 1, as a particular case from (3. 7)
immediately follows (3. 5).

For x1 = x2, from (3.7) one obtains this elementary re-
action

2 HClO3 + O2 � 2 HClO4.

For x1 = 7x2/5, chemical reaction (3.7) transforms into

7 HClO3 � 5 HClO4 + Cl2 + H2O.

If x1 < x2, then (3.7) becomes

x1 HClO3 + (x2 – x1)/2 Cl2

+ (7x2 – 5x1)/4 O2 + (x2 – x1)/2 H2O
� x2 HClO4, (x1 < x2).

If x2 < x1 < 7x2/5, then chemical reaction (3.7) attains
this form

x1 HClO3 + (7x2 – 5x1)/4 O2 � x2 HClO4

+ (x1 – x2)/2 Cl2 + (x1 – x2)/2 H2O,
(x2 < x1 < 7x2/5).

For the reactions (3.3), (3.4) and (3.5) Lehrman37

with the mentioned particular cases gave a comprehen-
sive construction of ad infinitum equations.

The last reaction (3.6), between potassium chlorate
and hydrochloric acid, has a general solution

x1 KClO3 + x2 HCl � x1 KCl
+ (– 3x1 + 5x2/2)/4 Cl2 + x2/2 H2O

+ (3x1 – x2/2)/2 ClO2, (3.8)
(6x1/5 < x2 < 6x1).

For x1 = 4 and x2 = 16 from the chemical reaction
(3.8) as a particular solution follows (3. 6).

For x1 = 5x2/6, from (3.8) one obtains this elementary
reaction

5 KClO3 + 6 HCl � 5 KCl
+ 3 H2O + 6 ClO2.

For x1 = x2/6, then (3. 8) becomes

KClO3 + 6 HCl � KCl + 3 Cl2 + 3 H2O.

If x1 > 5x2/6, then (3. 8) transforms into

x1 KClO3 + x2 HCl + (3x1 – 5x2/2)/4 Cl2

� x1 KCl + x2/2 H2O
+ (3x1 – x2/2)/2 ClO2, (x1 > 5x2/6). (3. 9)

We would like to emphasize here that all the reac-
tions are balanced by the well–known algebraically
method, and all the two–parametric coefficients are cor-
rect. It is completely different from the third Steinbach’s
statement given above, which gives advantage to the va-
lence–change or the ion–electron methods.

If we take into account the very well–known rule that
equations for consecutive reactions may be added and
equations for concurrent reactions may not be added,
then obviously Steinbach brings up the old, very old er-

ror involved in adding equations for concurrent reac-
tions. It is his biggest mistake.

What happens when the reactions are not unique ac-
cording to Steinbach? In that case, he »balanced« them
as an infinite number of reactions, which do not express
actual stoichiometric relations. They are »derived« by
combining together the reactions for concurrent reac-
tions, in which coefficients in each of the two or more re-
actions are previously multiplied by different numbers.
Sure, these reactions are incorrect, as they do not corre-
spond to the real stoichiometric relations among the sub-
stances, which are involved. In some cases, there is no
constant relation among the quantities of substances ex-
pressed by his reactions. The ratio of the quantities will
depend upon chemical conditions (concentration, tem-
perature, etc.).

The above Steinbach’s reactions, in fact, are oxida-
tion–reduction reactions for which we found the general
solutions by using of algebraic method. Every one of
them in fact represents two chemical reactions, not one
as Steinbach stated. Therefore, these reactions are not
non–stoichiometric reaction! Standen in his article38

named these Steinbach’s reactions as bizarre non–stoi-
chiometric equations.

McGavock in39 gave a note on errata in the Stein-
bach’s article35.

In order to explain what a non–stoichiometric reac-
tion represents, McGavock considered an example from
his book40.

Example 3.2. It is the cracking reaction

x1 C8H18 � x2 C2H4

+ x3 C3H6 + x4 CH4. (3.10)

Now, we shall show that the above reaction (3.10) is
not a non–stoichiometric reaction.

From the scheme given below

v 1
=

C
8H

18

v 2
=

C
2H

4

v 3
=

C
3H

6

v 4
=

C
H

4

C 8 2 3 1
H 18 4 6 4

follows this vector equation

x1v1 = x2v2 + x3v3 + x4v4,

i. e.,

x1 (8, 18)T

= x2 (2, 4)T + x3 (3, 6)T + x4 (1, 4)T,

or

(8x1, 18x1)
T

= (2x2 + 3x3 + x4, 4x2 + 6x3 + 4x4)
T.

From the system of linear equations

8x1 = 2x2 + 3x3 + x4,
18x1 = 4x2 + 6x3 + 4x4,
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one obtains x4 = x1 and x3 = (7x1 – 2x2)/3. Now, bal-
anced chemical equation has this general solution

x1 C8H18 � x2 C2H4 + (7x1 – 2x2)/3 C3H6

+ x1 CH4, (x1 > 2x2/7). (3.11)

The vectors v1, v2, v3 and v4 of the molecules of the
above chemical reaction are linearly dependent and they
generate an infinite number of vector spaces V� over �,
i. e., one obtains an infinite number of solutions [x1, x2,
(7x1 – 2x2)/3, x1], (x1 > 2x2/7), that means that the chemi-
cal reaction (3. 10) is non–unique.

Figure 1: Plane 7x1 – 2x2 – 3x3 = 0 in �3

However, it is not possible, either on an algebraic or
empirical basis, to exclude nonintegral values for the co-
efficients. Each point of the plane 7x1 – 2x2 – 3x3 = 0,
given on the Figure 1, represents a triad of positive,
nonintegral values. Infinity of such points corresponding
to infinity of triads of coefficients in the above equation
exists. By virtue of this finding, it is asserted that this
cracking reaction does not represent a non–stoichio-
metric reaction. It contradicts McGavock’s statement.

McGavock in39 obtained this reaction

C8H18 � 2 C2H4 + C3H6 + CH4. (3.12)

Actually, the reaction (3.12) is a particular solution of
(3.11), for x1 = 1 and x2 = 2. The above McGavock’s
»non–stoichiometric« reaction (3.12) according to
Standen38 can also be written as two reactions:

C8H18 � C7H14 + CH4,

C7H14 � 2 C2H4 + C3H6.

Before the reaction (3.12) be regarded as a genuine
non–stoichiometric reaction, it must be shown that it is
one reaction. It might be a combination of these two re-
actions:

2 C8H18 � 7 C2H4 + 2 CH4,

3 C8H18 � 7 C3H6 + 3 CH4.

Also, this Standen’s counterexample shows that
chemical reaction (3.12) is not non–stoichiometric reac-
tion.

By this and the Definition 2.16, we proved that
McGavock’s presentation for non–stoichiometric reac-
tion is an ordinary fallacy.

II. Porges in his article41 wrote: After examinning a
great many chemical equations, one concludes that most
of them are of the type in which the number of com-
pounds involved exceeds the number of elements by
unity.

This Porges’ statement does not represent any crite-
rion for balancing chemical equation and it is completely
wrong. In fact, it is only an ordinary paradox! The
counterexamples given below show it.

Example 3.3. Let us consider this elementary chemi-
cal reaction

x1 BiCl3 + x2 H2O � x3 HCl + x4 BiClO.

Here, we have a case when the number of involved
compounds does not exceed the number of elements by
unity, i. e., in this case four elements are involved in four
molecules. The above chemical reaction reduces to a sys-
tem of four linear equations in four unknown variables
and the chemical reaction has a unique solution. The bal-
anced reaction has this form

BiCl3 + H2O � 2HCl + BiClO.

Example 3.4. For instance, in the chemical reaction

x1 Cu2S + x2 HNO3 � x3 Cu2SO4

+ x4 NO + x5 H2O,

five elements are involved in five molecules. The above
reaction has a unique solution x1 = 3, x2 = 8, x3 = 3, x4 =
8, x5 = 4.

Example 3.5. In this particular reaction

x1 K4Fe(CN)6 + x2 K2S2O3 � x3 KCNS
+ x4 K2SO4 + x5 K2S + x6 FeS,

are involved six elements and same number of mole-
cules, i. e., we have six linear equations in six unknown
variables. The chemical reaction has a unique solution
x1 = 2, x2 = 12, x3 = 12, x4 = 9, x5 = 1, x6 = 2.

Example 3.6. The chemical reaction

x1 AgPF6 + x2 Re(CO)5Br + x3 CH3CN
� x4 AgBr + x5 [Re(CO)5(CH3CN)]PF6,

contains nine elements in five molecules and it reduces
to a system of nine linear equations in five unknown
variables. The chemical reaction has a unique solution
x1 = x2 = � = x5 = 1.

The mentioned four counterexamples contradict to
the above Porges’ statement. By this, we refuted his
statement.

In the same article41 there are fallacies too.
For instance, he reduced the chemical reaction

x1 FeCl2 + x2 K2Cr2O7 + x3 HCl
� x4 FeCl3 + x5 KCl

+ x6 CrCl3 + x7 H2O, (3.13)

to the following system of linear equations
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x1 = x4, 2x1 + x3 = 3x4 + x5 + 3x6,
2x2 = x5, 2x2 = x6, (3.14)
7x2 = x7, x3 = 2x7.

Immediately from (3.14), he obtained

x1 = 6x2, x2 = x2, x3 = 14x2, x4 = 6x2,
x5 = 2x2, x6 = 2x2, x7 = 7x2. (3.15)

Next, he said: It is evident that the general integral
solution of (3.14) is derived from x2 = k, where k is any
positive integer, and consequently although (3.14) has an
infinite number of integral solutions, all of them derive
from x2 = k, and consist merely of multiplies of values for
the respective variables established by (3.15). All solu-
tions other than for k = 1, are therefore trivial chemically
as well as mathematically.

Unfortunately, the above statement is fallacious! The
last sentence All solutions other than for k = 1, are there-
fore trivial chemically as well as mathematically, is in-
correct. Previous Porges stated that x2 = k, where k is any
positive integer, and after that he took k = 1. It is wrong!
Why? To this question a very simple answer will follow
like this. The reaction (3.13) has a unique solution. If we
substitute (3.15) into (3.13), and after that if we divide
the relation (3.13) by an arbitrary real number x2 ≠ 0, im-
mediately follows

6 FeCl2 + K2Cr2O7 + 14 HCl
� 6 FeCl3 + 2 KCl + 2 CrCl3 + 7 H2O.

Actually, Porges considered the general solution
(3.15) of the system (3.14) separately of (3.13), what is
wrong. The reaction (3.13) and the general solution
(3.15) of the system (3.14) must be considered as one
whole, because they are connected with each other.

Obviously, we did not introduce any constant k, as it
was done previously by Porges. Our approach is com-
pletely different than Porges’ wrong way he used.

The same remark also holds for the second Porges’
reaction

As2S3 + 3 (NH4)2S � 2 (NH4)3AsS3. (3.16)

considered in41.
The third considered reaction in41 is given by this ex-

pression

x1 HAuCl3 + x2 K4Fe(CN)6

� x3 KAu(CN)4 + x4 KAu(CN)2

+ x5 KAu(CN)2Cl2 + x6 KCl + x7 HCl
+ x8 [4Fe(CN)3·3Fe(CN)2]. (3.17)

For its »solution« the author offered these expres-
sions

x1 = 12k – 2, x2 = 7k, x3 = 2, x4 = 8k – 1,
x5 = 4k – 3, x6 = 16k + 2,

x7 = 12k – 2, x8 = k, (3.18)

where k takes on all positive integral values. Yet (3.18)
is merely a particular solution, but it is not the general
solution of (3.17).

The general solution of the reaction (3.17) is given by
this expression

14x1 HAuCl3 + 14x2 K4Fe(CN)6

� (24x2 – 14x1) KAu(CN)4

+ (7x1 + 4x2) KAu(CN)2

+ (21x1 – 28x2) KAu(CN)2Cl2

+ (56x2 – 14x1) KCl + 14x1 HCl
+ 2x2 [4Fe(CN)3·3Fe(CN)2],

(4x2/3 < x1 < 12x2/7). (3.19)

The balanced reaction (3.19) is an expression of two
parameters, but it is not one–parametric expression as it
is given in41. In fact, it is another Porges’ fallacy.

Remark 3.7. Intentionally, we omitted from consider-
ation other particular solutions of (3.19) because we had
into account that our work has a limited size.

Before ending his article41, Porges posed the follow-
ing three questions:

1° Is there, for equations of this third type which ad-
mits infinitely many distinct, not multiple solutions, a
least action principle similar to that in mechanics?

2° Of the unlimited number of ways of balancing
such an equation as (3.17), is that corresponding to the
solution in least integer of the linear equations the one
invariably indicated by the laboratory work, which is, af-
ter all, the real criterion?

3° Further, what would a minimum solution be – that
for which the square root of the arithmetic mean of the
squares of the variables is less than for any other solu-
tion?

To date we did not meet in chemical literature any re-
ply on these questions. It is a challenge for us to try to
give appropriate answers on the above questions. Sure,
the answers will be given in a rough form, because a
comprehensive replay looks for a special article dedi-
cated only on that particular subject.

The answer on the first question should be like this.
No! In chemistry there is not a least action principle sim-
ilar to that in mechanics, because the balancing chemi-
cal equation has not any tangent point with mechanics,
just it is connected with linear algebra. In fact, balanc-
ing chemical equations is not chemistry; it is just linear
algebra7. On the other hand, the term a least action as-
sociate on the dynamism of 18th century as metaphysics
was traced by Leibniz and Boscovich. Later Boyle gave
an explicit formulation of chemistry in a coherent meta-
physical scheme. A comprehensive study about meta-
physics of chemical reaction is given in42.

The second question is interesting for a discussion,
and it can be answered negatively in this way. Unlimited
number of ways of balancing such a reaction as (3.17) is
not corresponding to the solution in least integer of the
linear equations the one invariably indicated by the lab-
oratory work, which is, after all, the real criterion. This
case, in fact, boils down to the continuum problem. It is
an extremely hard problem, which is a stumbling block
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for mathematicians as well as chemists. In other words,
this case can sink into the third question.

As the third question is posed, it contains a wrong
formulation for minimum solution. It is one more
Porges’ fallacy. One can reply the last question like this.
When the question is posed it was unbelievable for that
time. It was impossible because the mathematical meth-
ods needed for its proof were unknown. For instance,
Moore–Penrose pseudoinverse matrix8,9 was discovered
ten years later in 1955 and its first application in
chemistry43 appeared more than two decades later in
1978. Also, then was unknown the general problem of
balancing chemical equations44. From today viewpoint,
by using of Moore–Penrose pseudoinverse matrix the
minimal solution is obtained in45,46.

Now, a new question arises: why not look for a topol-
ogy of solutions of chemical equations, instead of finding
minimal solutions? It is a much better question, than
non–unique equation to be reduced to a minimal case.
The question is new, and it is extremely hard. Sure, it
will be a challenge for the next research.

Porges finished his article41 on this way: In the very
few equations of the third type encountered by the writer,
the balancing in least integers was always that for which
k was also least, and was identical with the laboratory
balancing; but given a general solution not minimized by
smallest admissible value of k – theoretically not impos-
sible – then what?

It represents one last Porges’ fallacy! We shall build
the reply to this question on the concept of the contin-
uum. In fact, the word continuum is recognizable as the
name used by Cantor to refer to the real line. From the
expression (3. 19), we can see that this kind of chemical
equations reduces to the Cantor’s continuum problem.
This problem is simply condensed in the following ques-
tion: How many points are there on the straight line in
Euclidean space? In other words, the question is: How
many different sets of integers do there exist?47 This
problem is neither simple nor easy; it needs a wide ex-
planation. It shows that balancing chemical equations is
a main object in Foundation of Chemistry, which lies
in an intertwined mixture of topology, abstract algebra,
linear algebra, axiomatic set theory, mathematical logic,
computability theory and proof theory. To explain a little
more fully this idea we must first discuss the concept of
a formal system. Why? Simply, chemical equation must
be treated only as a formal system, if we like to avoid ap-
pearance of paradoxes. In an opposite case we shall have
paradoxes as these mentioned in this section.

A formal chemical system consists of a finite set of
symbols and of a finite number of rules by which these
symbols can be combined into formulas or statements.
That kind of formal system is given in second section of
this work. A number of such statements are nominated as
axioms and by repeated applications of the rules of the
system one obtains an ever growing body of provable
statements.

A proof of a given statement is a finite sequence of
statements that starts with an axiom and ends with the
preferred statement. The sequence is such that every
transitional statement is either an axiom or is derivable
by the rules of the system from statements that lead it.
Thus, a statement that a sequence of formulas does or
does not represent a proof of formula is »not« a state-
ment in the formal system itself. It is a statement
»about« the system and such statements are often re-
ferred to as »metamathematical«.

For the first time a formal generalized inverse matrix
approach for balancing chemical equation is introduced
in44. Balancing chemical equations as a matrix well–de-
fined formal system is given in the works45,46,48–50.

III. Another paradox in the theory of balancing
chemical equations is the following Standen’s state-
ment38: It would seem that examples could not be found
where the number of mathematical equations actually
exceeds the number of variables; for if the mathematical
equations were inconsistent, the whole thing would be an
impossibility, while if they were consistent it would indi-
cate that the chemical equation had been appropriately
broken down into its terms.

To prove the above Standen’s absurdity, we shall use
the following counterexamples.

Example 3.8. The chemical reaction

x1 CoCl2 + x2 Na3PO4 � x3 NaCl + x4 Co3(PO4)2,

contains five elements involved in four molecules, i. e.,
in this case the chemical reaction reduces to a system of
five linear equations in four unknown variables and the
chemical reaction has a unique solution. The balanced
reaction has this form

3 CoCl2 + 2 Na3PO4 � 6 NaCl + Co3(PO4)2.

Example 3.9. In this particular reaction

x1 Cu(NH3)4Cl2 + x2 KCN + x3 H2O
� x4 [K2Cu(CN)3·NH4Cl·KCl] + x5 KCNO + x6 NH3,

are involved seven elements in six molecules, i. e., we
have seven linear equations in six unknown variables.
The chemical reaction has a unique solution x1 = 2, x2 =
7, x3 = 1, x4 = 2, x5 = 1, x6 = 6.

Example 3.10. For instance, the chemical reaction

x1 AgPF6 + x2 Re(CO)5Br + x3 CH3CN
+ x4 K2S2O3 � x5 KBr

+ x6 [Re(CO)5(CH3CN)]PF6

+ x7 Ag2S + x8 K2O + x9 SO2,

has eleven elements involved in nine molecules. The
above chemical reaction reduces to a system of eleven
linear equations in nine unknown variables, whose
unique solution is x1 = 4, x2 = 4, x3 = 4, x4 = 3, x5 = 4, x6

= 4, x7 = 2, x8 = 1, x9 = 4.
By the last three counterexamples we showed that the

above Standen’s38 statement is an absurd.
IV. Next, we shall consider the Blakley’s51 paradox.

Among other chemical reactions, he considered hydroly-
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sis of two organic substances: bradykinin and grami-
cidin–S.

Example 3. 11. The following reaction

x1 C2H5NO2 + x2 C3H7NO3

+ x3 C6H14N4O2 + x4 C5H9NO2

+ x5 C9H11NO2

� x6 H2O + x7 C50H73N15O11. (3.20)

was studied in51. Blakley considered balancing of the
above chemical reaction by a matrix approach using a
module basis.

He »proved« that »hydrolysis (3.20) of bradykinin is
unique«. It represents only an empirical discovered rela-
tionship, which is wrong.

We shall prove the absurdity of his statement by us-
ing the well–known algebraic method for balancing
chemical equations.

By the way, we shall show that this method is power-
ful and its usage is not limited as some traditional ori-
ented chemists think.

Let us consider the scheme of the chemical reaction
(3.20).

C
2H

5N
O

2

C
3H

7N
O

3

C
6H

14
N

4O
2

C
5H

9N
O

2

C
9H

11
N

O
2

H
2O

C
50

H
73

N
15

O
11

C 2 3 6 5 9 0 –50
H 5 7 14 9 11 –2 –73
N 1 1 4 1 1 0 –15
O 2 3 2 2 2 –1 –11

From the above scheme imediatelly follows the
stoichiometric matrix

A =

−
− −

−
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
2 3 6 5 9 0 50

5 7 14 9 11 2 73

1 1 4 1 1 0 15

2 3 2 2 2 1 11

⎥
⎥

with r = rankA = 4.
Since nullityA = n – r = 7 – 4 = 3 > 1, where n is the

total number of reaction molecules, then the chemical re-
action is possible and it has an infinite number of solu-
tions. Let us prove it.

One can reduce the chemical reaction (3.20) to the
following system of linear equations

2 x1 + 3 x2 + 6 x3 + 5 x4 + 9 x5 = 50 x7,
5 x1 + 7 x2 + 14 x3 + 9 x4 + 11 x5

= 2 x6 + 73 x7, (3.21)

x1 + x2 + 4 x3 + x4 + x5 = 15 x7,
2 x1 + 3 x2 + 2 x3 + 2 x4 + 2 x5

= x6 + 11 x7.

The general solution of the system (3.21) is given by
the following expressions

x4 = 66 x1/23 + 93 x2/23 – 45 x3/23,
x5 = – 14 x1/23 – 26 x2/23 + 43 x3/23, (3.22)

x6 = 95 x1/23 + 137 x2/23 – 24 x3/23,
x7 = 5 x1/23 + 6 x2/23 + 6 x3/23,

where xi > 0 (1 � i � 3) are arbitrary real numbers.
After substitution of (3.22) in (3.20), one obtains a

balanced chemical reaction

x1 C2H5NO2 + x2 C3H7NO3 + x3 C6H14N4O2

+ (66 x1/23 + 93 x2/23 – 45 x3/23) C5H9NO2

+ (– 14 x1/23 – 26 x2/23 + 43 x3/23) C9H11NO2

� (95 x1/23 + 137 x2/23 – 24 x3/23) H2O
+ (5 x1/23 + 6 x2/23

+ 6 x3/23) C50H73N15O11. (3.23)

From (3.23) follows this system of inequalities

22x1 + 31x2 – 15x3 > 0,
– 14x1 – 26x2 + 43x3 > 0, (3.24)
95x1 + 137x2 – 24x3 > 0,

5x1 + 6x2 + 6x3 > 0.

From the first and the second inequality of (3.24) im-
mediately follows this expression

14 x1/43 + 26 x2/43 < x3

< 22 x1/15 + 31 x2/15. (3.25)

The expression (3.25), the third and the fourth in-
equality of (3.24) are necessary and sufficient conditions
for (3.23) to hold.

For instance, if we substitute x1 = x2 = 1 and x3 = 2 in
(3.23), then as a particular case appears this reaction

C2H5NO2 + C3H7NO3 + 2 C6H14N4O2

+ 3 C5H9NO2 + 2 C9H11NO2

� 8 H2O + C50H73N15O11,

for which Blakley51 stated that it is unique, but it is not
true.

Now, we shall give two more particular cases for
which (3.23) holds.

Let x1 = x2 = x3 = 1, then from (3.23) one obtains the
reaction

23 C2H5NO2 + 23 C3H7NO3

+ 23 C6H14N4O2 + 114 C5H9NO2

+ 3 C9H11NO2

� 208 H2O + 17 C50H73N15O11.

Let x1 = x2 = 1 and x3 = 3, then (3.23) becomes

23 C2H5NO2 + 23 C3H7NO3

+ 69 C6H14N4O2 + 24 C5H9NO2

+ 89 C9H11NO2

� 160 H2O + 29 C50H73N15O11.

The other particular cases of (3.23) are not consid-
ered, because we took into account the Remark 3.7.

Example 3.12. In51 the hydrolysis of gramicidin–S
was studied, given by the following reaction

x1 C5H9NO2 + x2 C5H11NO2 + x3 C6H13NO2

+ x4 C9H11NO2 + x5 C5H12N2O2

� x6 C60H92N12O10 + x7 H2O. (3.26)
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For the chemical reaction (3.26) if we write its
stoichiometric scheme, then one obtains

C
5H

9N
O

2

C
5H

11
N

O
2

C
6H

13
N

O
2

C
9H

11
N

O
2

C
5H

12
N

2O
2

C
60

H
92

N
12

O
10

H
2O

C 5 5 6 9 5 –60 0
H 9 11 13 11 12 –92 –2
N 1 1 1 1 2 –12 0
O 2 2 2 2 2 –10 –1

from where follows the stoichiometric matrix

A =

−
− −
−
− −

⎡

⎣

⎢
⎢
⎢

⎤5 5 6 9 5 60 0

9 11 13 11 12 92 2

1 1 1 1 2 12 0

2 2 2 2 2 10 1⎦

⎥
⎥
⎥

with r = rankA = 4.
Since nullityA = n – r = 7 – 4 = 3 > 1, then chemical

reaction is possible and it has an infinity number of solu-
tions. Let us prove it.

The system of linear equations obtained from (3. 26)
is

5 x1 + 5 x2 + 6 x3 + 9 x4 + 5 x5 – 60 x6 = 0,
9 x1 + 11 x2 + 13 x3 + 11 x4

+ 12 x5 – 92 x6 – 2 x7 = 0, (3.27)
x1 + x2 + x3 + x4 + 2 x5 – 12 x6 = 0,

2 x1 + 2 x2 + 2 x3 + 2 x4

+ 2 x5 – 10 x6 – 1 x7 = 0.

The general solution of (3.27) is given by the expres-
sions

x1 = – 4 x4 + 20 x6 – x7,
x2 = 7 x4 – 57 x6 + 9 x7/2, (3.28)

x3 = – 4 x4 + 35 x6 – 5 x7/2,
x5 = 7 x6 – x7/2,

where x4, x6 and x7 are arbitrary real numbers.
After substitution of (3.28) in (3.26), the balanced

chemical reaction has this form

(– 4 x4 + 20 x6 – x7) C5H9NO2

+ (7 x4 – 57 x6 + 9 x7/2) C5H11NO2

+ (– 4 x4 + 35 x6 – 5 x7/2) C6H13NO2

+ x4 C9H11NO2 + (7 x6 – x7/2) C5H12N2O2

� x6 C60H92N12O10 + x7 H2O, (3.29)

From (3.29) follows this system of inequalities

– 4 x4 + 20 x6 – x7 > 0,
7 x4 – 57 x6 + 9 x7/2 > 0, (3.30)

– 4 x4 + 35 x6 – 5 x7/2 > 0,
7 x6 – x7/2 > 0.

From the second and the third inequality of (3.30)
immediately follows this expression

– 14 x4/9 + 114 x6/9 < x7

< – 8 x4/5 + 14 x6. (3.31)

The expression (3.31), the first and the fourth in-
equality of (3.30) are necessary and sufficient conditions
for (3.29) to hold.

For instance, if we substitute x4 = 2, x6 = 1 and x7 =
10 in (3.29), then as a particular case appears this reac-
tion

2 C5H9NO2 + 2 C5H11NO2 + 2 C6H13NO2

+ 2 C9H11NO2 + 2 C5H12N2O2

� C60H92N12O10 + 10 H2O.

for which Blakley51 stated that it is unique, but it is not
true.

Now, we shall give more two particular cases for
which holds (3.29).

Let x4 = x6 = 9 and x7 = 102, then from (3.29) one ob-
tains the reaction

42 C5H9NO2 + 9 C5H11NO2

+ 24 C6H13NO2 + 9 C9H11NO2 + 12 C5H12N2O2

� 9 C60H92N12O10 + 102 H2O.

Let x4 = 27, x6 = 21 and x7 = 250, then (3.29) be-
comes

62 C5H9NO2 + 117 C5H11NO2

+ 2 C6H13NO2 + 27 C9H11NO2 + 22 C5H12N2O2

� 21 C60H92N12O10 + 250 H2O.

The other particular cases of (3.29) are not consid-
ered because we took into account the Remark 3.7.

V. Das in his article52 applied the partial equation
method for balancing chemical equations. There he
wrote: if the number of reactants and products is equal
to or less (or at most one more) than the total number of
elements involved in the chemical equation, then there
will be only one way of balancing a chemical equation.

For the first two cases this statement is a paradox!
The next two counterexamples given below contradict to
the above statement.

Example 3.13. The following chemical reaction

x1 NO2 + x2 HClO � x3 HNO3 + x4 HCl,

has involved four elements in four molecules, but it has
not a unique solution as stated above. It is an unfeasible
reaction, because x1 = x2 = x3 = x4 = 0.

Now, we shall give another counterexample.
Example 3.14. In the reaction

x1 KIO2 + x2 Pb(NO3)2 � x3 KNO3 + x4 PbI2,

five elements are involved in four molecules. This reac-
tion has only a trivial solution x1 = x2 = x3 = x4 = 0. It
shows that this reaction is unfeasible.

VI. Next, we shall elaborate another very interesting
paradox. García53 gave a »half–reaction method« for bal-
ancing chemical equations. He described his »method«
on this way. The chemical reaction is divided into two
half–reactions and each one is balanced independently.
These two balanced half–reactions are added together to
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get the correct stoichiometry of the reaction. One
half–reaction is formed with compounds that contain the
same elements other than oxygen and hydrogen. The re-
maining compounds, and others if it is necessary, consti-
tute the other half–reaction.

Example 3.15. This chemical reaction

x1 FeS2 + x2 HNO3 � x3 Fe2(SO4)3

+ x4 NO + x5 H2SO4, (3.32)

he »balanced« like this

2 FeS2 + 10 HNO3 � Fe2(SO4)3

+ 10 NO + H2SO4 + 4 H2O. (3.33)

Unfortunately reaction (3.33) is quantitatively and
qualitatively different from the reaction (3.32). Actually,
the reaction (3.33) is augmented reaction (3.32) by four
water molecules. Reactions (3.32) and (3.33) belong to
different types of reactions, and according to it, they are
incompatible. The reaction (3.32) belongs to the type of
unfeasible reactions, because its vectors of molecules do
not generate a vector space V over .

For our next analysis we shall use the newest method7

for balancing chemical equations founded by virtue of
theory of complex finite dimensional vector spaces. We
chose it, because in this particular Garcia’s case, it was
the most suitable method for comparative analysis of
chemical reactions which belong to different classes. Ap-
plication of this method confirmed its scientific suprem-
acy.

From (3.32) one obtains the scheme given below

v 1
=

F
eS

2

v 2
=

H
N

O
3

v 3
=

F
e 2

(S
O

4)
3

v 4
=

N
O

v 5
=

H
2S

O
4

Fe 1 0 2 0 0
S 2 0 3 0 1
H 0 1 0 0 2
N 0 1 0 1 0
O 0 3 12 1 4

The vector equation of reaction (3.32) is

x1v1 + x2v2 = x3v3 + x4v4 + x5v5,

i. e.,

x1 (1, 2, 0, 0, 0)T + x2 (0, 0, 1, 1, 3)T

= x3 (2, 3, 0, 0, 12)T + x4 (0, 0, 0, 1, 1)T

+ x5 (0, 1, 2, 0, 4)T,

or

(x1, 2x1, x2, x2, 3x2)
T

= (2x3, 3x3 + x5, 2x5, x4, 12x3 + x4 + 4x5)
T.

The system of linear equations

x1 = 2x3, 2x1 = 3x3 + x5, x2 = 2x5, x2 = x4,
3x2 = 12x3 + x4 + 4x5,

is inconsistent, because one obtains the contradiction x5

= x1/2 and x5 = – x1. It means that the vectors v1, v2, v3,
v4 and v5 of molecules of the chemical reaction (3.32)
are linearly independent and they do not generate a vec-
tor space V over . By this we showed that the chemical
reaction (3.32) is unfeasible.

On the other hand, the rank of the reaction matrix A
of the chemical reaction (3.32) is

r = rankA = rank

1 0 2 0 0

2 0 3 0 1

0 1 0 0 2

0 1 0 1 0

0 3 12 1 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 5

According to the algebraic criterion (2.6) for balanc-
ing chemical reactions, the reaction (3.32), has nullityA
= n – r = 5 – 5 = 0, that means that the reaction (3.32) is
unfeasible. Both proofs, vector and algebraic, confirmed
the same, that the reaction (3.32) is unfeasible. It contra-
dicts the García’s »procedure« named as »half–reaction
method« for balancing chemical reactions.

Now, we shall consider the reaction (3.33) in its un-
balanced form

x1 FeS2 + x2 HNO3 � x3 Fe2(SO4)3

+ x4 NO + x5 H2SO4 + x6 H2O (3.34)

Now, we need the stoichiometric scheme for the
above chemical reaction. From this particular reaction
(3.34), we shall derive very easy required stoichiometric
scheme

v 1
=

F
eS

2

v 2
=

H
N

O
3

v 3
=

F
e 2

(S
O

4)
3

v 4
=

N
O

v 5
=

H
2S

O
4

v 6
=

H
2O

Fe 1 0 2 0 0 0
S 2 0 3 0 1 0
H 0 1 0 0 2 2
N 0 1 0 1 0 0
O 0 3 12 1 4 1

From the above scheme one obtains this vector equa-
tion

x1v1 + x2v2 = x3v3 + x4v4 + x5v5 + x6v6,

i. e.,

x1 (1, 2, 0, 0, 0)T + x2 (0, 0, 1, 1, 3)T

= x3 (2, 3, 0, 0, 12)T + x4 (0, 0, 0, 1, 1)T

+ x5 (0, 1, 2, 0, 4)T + x6 (0, 0, 2, 0, 1)T,

or

(x1, 2x1, x2, x2, 3x2)
T

= (2x3, 3x3 + x5, 2x5 + 2x6, x4, 12x3

+ x4 + 4x5 + x6)
T.

The solution of the system of linear equations

I. B. RISTESKI: NEW DISCOVERED PARADOXES IN THEORY OF BALANCING CHEMICAL REACTIONS

514 Materiali in tehnologije / Materials and technology 45 (2011) 6, 503–522



x1 = 2x3, 2x1 = 3x3 + x5, x2 = 2x5 + 2x6,
x2 = x4, 3x2 = 12x3 + x4 + 4x5 + x6,

is

x2 = 5x1, x3 = x1/2, x4 = 5x1,
x5 = x1/2 and x6 = 2x1. (3.35)

If we substitute (3.35) in (3.34), and after that, if we
divide the reaction by x1/2 one obtains (3.33). The vec-
tors v1, v2, v3, v4, v5 and v6 of reaction molecules are lin-
early dependent and they generate a vector space V over
�. By this we confirmed that the reaction (3.33) has a
unique solution.

Similarly as in the previous equation analysis, now
we can go to the next step. Now we can calculate the
rank of the reaction matrix A of the reaction (3.33).

Therefore, we can express its rank in this way

r = rankA = rank

1 0 2 0 0 0

2 0 3 0 1 0

0 1 0 0 2 2

0 1 0 1 0 0

0 3 12 1 4 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 5

According to the algebraic criterion (2.6) for balanc-
ing chemical equations, the reaction matrix A has
nullityA = n – r = 6 – 5 = 1. By this, again we showed
that chemical reaction (3.33) has a unique solution. The
analysis of the reaction (3.33), established that it belongs
to the type of solvable equations, which have a unique
solution.

This comparative analysis confirmed that García’s
half–reaction simple »method«53 is completely wrong.
Generally speaking, his so–called »method« cannot rec-
ognize the type of reaction, and much less to decide if
the chemical equation is solvable or not. To support it,
we shall give a dozen of counterexamples, where water
molecules in García’s procedure of reaction extension
(3.33), may be substituted by other molecules of the ele-
ments involved in the reaction (3.32), as it is exposed by
the following reactions

2 FeS2 + 8 HNO3 � Fe2(SO4)3

+ 8 NO + H2SO4 + 3 H2,
2 FeS2 + 14 HNO3 � Fe2(SO4)3

+ 14 NO + H2SO4 + 6 H2O2,
10 FeS2 + 34 HNO3 � 5 Fe2(SO4)3

+ 22 NO + 5 H2SO4 + 12 NH2,
14 FeS2 + 50 HNO3 � 7 Fe2(SO4)3

+ 38 NO + 7 H2SO4 + 12 NH3,
10 FeS2 + 34 HNO3 � 5 Fe2(SO4)3

+ 22 NO + 5 H2SO4 + 6 N2H4,
10 FeS2 + 34 HNO3 � 5 Fe2(SO4)3

+ 26 NO + H2SO4 + 4 (NH4)2SO3,
14 FeS2 + 50 HNO3 � 7 Fe2(SO4)3

+ 38 NO + H2SO4 + 6 (NH4)2SO4,
4 FeS2 + 16 HNO3 � 2 Fe2(SO4)3

+ 13 NO + 2 H2SO4 + 3 NH4O,

34 FeS2 + 130 HNO3 � 17 Fe2(SO4)3

+ 106 NO + 17 H2SO4 + 12 (NH4)2O.

Neither one of the above reactions nor chemical reac-
tion (3.33) is equivalent to the chemical reaction (3.32).
Therefore, reactions (3.32) and (3.33) are incompatible.

In a similar way, García considered the following two
reactions53.

Example 3. 16. The following chemical reaction

x1 CrI3 + x2 KOH + x3 Cl2 � x4 K2CrO4

+ x5 KIO3 + x6 KCl, (3.36)

he »balanced« like this

2 CrI3 + 52 KOH + 21 Cl2 � 2 K2CrO4

+ 6 KIO3 + 42 KCl + 26 H2O. (3.37)

On top of all he said: This method is appropriate to
balance any kind of reaction, even those that include
complex ions or reactions of compounds with oxidation
numbers difficult to determine.

By the same analysis which we used in the previous
counterexample, very easy we shall show the absurdity
of his statement.

Reaction (3.36) belongs to the type of unfeasible re-
action. Its stoichiometric matrix A has rank r = rankA =
6 and its nullityA = n – r = 6 – 6 = 0 verifies that it is an
unfeasible reaction. Also, this reaction generates an in-
consistent system of linear equations which has only a
trivial solution xi = 0, (1 � i � 6). Thus, this algebraic
criterion verifies that the reaction (3.36) is unfeasible
too.

Reaction (3. 37) generates a consistent system of lin-
ear equations which has a unique solution given in
(3.37). Also, the nullityA = n – r = 7 – 6 = 1, shows that
this equation has a unique solution. Therefore, reactions
(3.36) and (3.37) are incompatible, because they are two
completely different types of reactions – the first one is
an unfeasible reaction, while the second one is a unique
reaction.

Now, we shall mention just two chemical reactions,
where water molecules in García’s »procedure« of reac-
tion extension (3.37), are substituted by other molecules
of the elements involved in the reaction (3.36):

2 CrI3 + 26 KOH + 8 Cl2 � 2 K2CrO4

+ 6 KIO3 + 16 KCl + 13 H2,
2 CrI3 + 26 KOH + 21 Cl2 � 2 K2CrO4

+ 6 KIO3 + 16 KCl + 26 HCl.

Neither one of the above reactions nor chemical reac-
tion (3.37) is equivalent to the chemical reaction (3.36).
Therefore, reactions (3.36) and (3.37) are incompatible.

In the same paper, García considered two ionic reac-
tions too. Unfortunately, also in these particular cases the
same absurdity appears again.

Example 3.17. For example, he »balanced« an un-
feasible reaction

x1 IO3
– + x2 Br– � x3 IO2

– + x4 Br2, (3.38)

where xi = 0 (1 � i � 4) as a unique reaction
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IO3
– + 2 Br– + 2 H+ � IO2

–

+ Br2 + H2O. (3.39)

Reactions (3.38) and (3.39) are two completely dif-
ferent reactions and they are incomparable!

A second ionic example that García considered is
given in the next example.

Example 3.18. The reaction

x1 ClO– + x2 P4 � x3 H2PO4
– + x4 Cl–, (3.40)

is »balanced« like this

10 ClO– + P4 + 2 H2O + 4 OH–

� 4 H2PO4
– + 10 Cl–. (3.41)

Where is the hydrogen atom in the left side of (3.40)?
Reaction (3.40) is an absurd, because it does not contain
hydrogen atom in its left side. With this kind of reac-
tions current chemistry does not work!

Reaction (3.41) does not dependent on (3.40) and it
represents a solvable equation. In other words, reactions
(3.40) and (3.41) are completely different types of reac-
tions and they are incompatible.

VII. In54 the so–called »formal balance numbers«
(FBN) are introduced like this: Formal balance numbers
are an aid that may grossly facilitate the problem of bal-
ancing complex redox equations. They may be chosen as
being equal to the traditional values of oxidation num-
bers, but not necessarily. An inspection of the redox
equation may suggest the optimal values that are to be
assigned to formal balance numbers. In most cases,
these optimal values ensure that only two elements will
šchange their state’ (i. e. the values of the formal balance
numbers), allowing the use of the oxidation number tech-
nique for balancing equations, in its simplest form. Just
as for oxidation numbers, the algebraic sum of the for-
mal balance numbers in a molecule/neutral unit is 0,
while in an ion it is equal to its charge (the sum rule).

It was quickly detected that the »procedure« given
in54 boils down to using of well–known unconventional
oxidation numbers, which previously were advocated by
Tóth55 and Ludwig56.

Consider this sentence from previous definition: They
may be chosen as being equal to the traditional values of
oxidation numbers, but not necessarily. It is a paradox!
If the »formal balance numbers« can be the same as oxi-
dation numbers or not, then the whole definition is illog-
ical. This definition represents only a contradictory
premise, which does not have any correlation with bal-
ancing chemical equations. It is just one thing.

Another thing, the above definition does not speak
anything about balancing chemical reactions in a chemi-
cal sense of the word, or their solution in a mathematical
sense.

Recent research7 confirmed that a chemical equation
can be balanced if and only if it generates a vector
space. That is a necessary and sufficient condition for
balancing a chemical equation!

The so–called called »formal balance numbers«,
which actually are the same as the well–known oxidation
numbers, do not represent any criterion for balancing
chemical equations.

Also the author of54 asserted that his »procedure« is
probably the fastest of all possible methods! Obviously
the author omitted to prove it. Perhaps, his statement is
valid (if he can prove it?) in some metachemistry, but
from a viewpoint of current mathematics and chemis-
try it is not true. Why? The reason is very simple. In
mathematics, as well as in chemistry there is neither a
definition for speed of equation solution nor its unit, and
according to it, it is impossible to compare which
method is faster. It is just one thing; another thing is that
the definition of so–called »formal balance numbers«
(FBN)54 is paradoxical and it produces only inconsistent
procedure for balancing chemical equations. According
to it, the author’s assertion of54 is an absurd.

The »procedure«54 founded by virtue of so–called
»formal balance numbers« (FBN), with several
counterexamples was refuted in7.

VIII. Ten Hoor in57 obtained this result:

C + x O2 � 2(1 – x) CO + (2x – 1) CO2, (3.42)
(1/2 � x � 1)

if the coefficient of a product is allowed to be equal to
zero. Taking x equal to its smallest or largest extreme
value, equation (3.42) reduces to

C + 1/2 O2 � CO, (3.43)

or

C + O2 � CO2, (3.44)

respectively.
The above statement is wrong. The reaction (3.42)

holds if only if 1/2 < x < 1, like it is shown on Fig. 2, but
not as it is given in57.

Figure 2: The interval 1/2 < x < 1

In (3.42) x does not have any extreme value, because
it is presented by the following linear functions: x, 2 – 2x
and 2x – 1. None of these functions have extrema, since
their second derivatives are equal to zero. Then on what
basis ten Hoor57 states that for smallest or largest ex-
treme value of x the reaction (3.42) reduces to (3.43) and
(3.44) respectively?

The chemical reaction (3.42) has two subgenerators 2
– 2x and 2x – 1 which generate the following particular
cases:

1° For x = 1, then (3.42) reduces to

C + O2 � CO2.
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2° For x = 1/2, then (3.42) becomes
C + 1/2 O2 � CO.
3° For x < 1/2, then (3.42) transforms into

C + x O2 + (1 – 2x) CO2 � 2(1 – x) CO,

4° For x > 1, then from (3.42) one obtains

C + x O2 + (2x – 2) CO � (2x – 1) CO2,

5° For 1/2 < x < 1, holds this reaction

C + x O2 � 2(1 – x) CO + (2x – 1) CO2.

Next, for the reaction (3.42) we shall determine its
minimal coefficients by using of Moore–Penrose gener-
alized inverse matrix46.

From the chemical reaction (3.42) follows this
scheme

C O C
O

C
O

2

C 1 0 –1 –1
O 0 2 –1 –2

According to the above scheme, the reaction matrix A
of (3.42) has this form

A =
1 0 1 1

0 2 1 2

− −
− −

⎡
⎣⎢

⎤
⎦⎥

The Moore–Penrose generalized inverse matrix A+ is

A+ = AT(A AT)–1 =

1 2 1 6

1 3 1 3

1 3 0 0

1 6 1 6

/ /

/ /

/ /

/ /

−
−
−
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The reaction (3.42) reduces to this matrix form

Ax = 0, (3. 45)

where x = (x1, x2, x3, x4)T is the vector of the coefficients
of (3.42), 0 = (0, 0)T is the zero vector and T denoting
transpose.

The general solution of the matrix equation (3.45) is

x = (I – A+A)a, (3.46)

where a is an arbitrary vector and I is a unite matrix. For
a = (1, 1, 1, 1)T, one obtains

xmin = (4/3, 1, 2/3, 2/3)T.

Then the reaction (3.42) with its minimal coefficients
attains this form

4/3 C + O2 � 2/3 CO + 2/3 CO2,

but not as ten Hoor asserted in57. By this proof we have
shown that his statement is paradoxical.

Also, the assumptions 1 and 2 which ten Hoor used
in57 are completely wrong, because carbon burns accord-
ing to the Boudouard’s reaction58. Wrong suppositions
can not lead to correct results.

IX. Authors of the article59 studied several chemical
reactions, but unfortunately there are given lots of erro-
neous results.

Let us mention them. In their article59 they provided
the following wrong definition: a chemical equation is a
written representation of a chemical reaction, showing
the reactants and products, they physical states, and the
direction in which the reaction proceeds.

According to the above definition a chemical equa-
tion will show like this

a A(s) + b B(g) � c C(s) + d D(g). (3.47)

For instace, if r = s = 2 in (2.1), then as a particular
case appears the reaction (3.47). Actually, it is not a defi-
nition for a chemical equation, just opposit it is a defini-
tion for a chemical reaction. Obviously the authors can
not distinguish what is a chemical reaction and what is
its chemical equation. These two things are different en-
tities given by the Definitions 2.2 and 2.1 (in a descrip-
tive form), i.e., 2.11 (in an analitical form), respectively.
It is just one reason what the above definition is wrong.

In order to be balanced certain chemical reaction is
not necessary to be known its reactants and products as it
is described in the above definition! It holds if only if re-
action is given in a conventional form, but in an opposite
case it does not hold. For instace, the chemical reaction
(3.47) given in a convntional form can be presented in an
algebrical free form too

a A(s) + b B(g) + c C(s) + d D(g) = 0. (3.48)

After determination of its coefficients, one obtains
that some of them have a negative sign and others have a
positive sign. Positive coefficients stay in front of reac-
tants and negative coefficients stay in front of products
of reaction, that means that chemical reaction is
self–adaptive. For example, in48 are balanced chemical
reactions given in an algebrical free form.

Next, we shall give an another reason why the above
definition is wrong.

Chemical equation does not have arrow mark as a re-
action, just sign for equality. It is a main difference be-
tween chemical reaction and chemical equation.

More accurately speaking, any chemical reaction
has a chemical equation, but the opposite does not
hold. Why?

Next, we shall give an explanation about it by a new
example. Let us balance the following chemical reaction

x1 Pb2O3 + x2 C � x3 Pb0.987O
+ x4 Pb3O4 + x5 CO + x6 CO2. (3.49)

From the above reaction follows this system of linear
equations

2 x1 = 0.987 x3 + 3 x4,
3 x1 = x3 + 4 x4 + x5 + 2 x6, (3.50)

x2 = x5 + x6.

In order to avoid fractional coefficients of the system
(3.50), we shall multiply its first equation by 1000, such
that one obtains this system of linear equations
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2000 x1 = 987 x3 + 3000 x4,
3 x1 = x3 + 4 x4 + x5 + 2 x6, (3.51)

x2 = x5 + x6.

The systems (3.50) and (3.51) are equivalent and they
have same solution.

Now, according to the system (3.51) the chemical re-
action (3.49) will transform into this particular form

x1 Pb2000O3 + x2 C � x3 Pb987O
+ x4 Pb3000O4 + x5 CO + x6 CO2. (3.52)

Do the expression (3.52) is a correct chemical reac-
tion? No! It represents only an ordinary chemical absurd,
because the molecules Pb2000O3, Pb987O and Pb3000O4 do
not exist in chemistry. This is the cause why from chemi-
cal equation does not follow chemical reaction.

Chemical reactions (3.49) and (3.52) in a mathemati-
cal sense both are equivalent reactions, since they reduce
to the same system of linear equations, but in a chemical
sense they are not equivalent reactions. That means, that

math. equivalency � chem. equivalency.

In other words, from a mathematical point of view,
the systems (3.50) and (3.51) both are equivalent, but
from a chemical view point they are not, since they gen-
erate different chemical reactions.

The above explanation, we can articulate roughly on
this way: performing of reaction is a chemical subject,
and its balancing is a mathematical topic. This is the rea-
son why balancing of chemical reactions is pure mathe-
matical matter, but not a chemical issue.

Next, we shall continue with the balancing of the re-
action (3.49), because its general solution is necessary
for a comparative analysis of other particular chemical
reactions.

The general solution of the system (3.50) is

x4 = 2 x1/3 – 0.329 x3,
x5 = – x1/3 + 2 x2 – 0.316 x3, (3.53)

x6 = x1/3 – x2 + 0.316 x3,

where xi, (1 � i � 3) are arbitrary real numbers.
Balanced reaction has this form

x1 Pb2O3 + x2 C � x3 Pb0.987O
+ (2 x1/3 – 0.329 x3) Pb3O4

+ (– x1/3 + 2 x2 – 0.316 x3) CO
+ (x1/3 – x2 + 0.316 x3) CO2, (3.54)

where xi, (1 � i � 3) are arbitrary real numbers.
Since x4, x5 and x6 are > 0, then from (3.54) one ob-

tains this system of inequalities

2 x1/3 – 0.329 x3 > 0,
– x1/3 + 2 x2 – 0.316 x3 > 0, (3.55)

x1/3 – x2 + 0.316 x3 > 0.

From (3.55), we obtain this relation

3 x2 – 0.948 x3 < x1 < 6 x2 – 0.948 x3. (3.56)

The inequality (3.56) is necessary and sufficient con-
dition to hold the general reaction (3.54).

Now, we can analyze the general reaction (3.54) for
all possible values of x1, x2 and x3. As particular reactions
of (3.54) we shall derive the following cases.

1° For x1 = 3, x2 = 2.4 and x3 = 4.5, from (3.53) fol-
lows x4 = 0.5195, x5 = 2.378 and x6 = 0.022, i.e., one ob-
tains this particular reaction

3 Pb2O3 + 2.4 C � 4.5 Pb0.987O
+ 0.5195 Pb3O4 + 2.378 CO

+ 0.022 CO2. (3.57)

2° For x1 = 0, the reaction (3.54) transforms into this
particular reaction

0.329 x3 Pb3O4 + x2 C � x3 Pb0.987O
+ (2 x2 – 0.316 x3) CO

+ (– x2 + 0.316 x3) CO2, (3.58)
(0.158 x3 < x2 < 0.316 x3).

3° For x2 = 0.158 x3, from (3.58) one obtains

0.329 Pb3O4 + 0.158 C � Pb0.987O
+ 0.158 CO2. (3.59)

4° For x2 = 0.316 x3, the reaction (3.58) becomes

0.329 Pb3O4 + 0.316 C � Pb0.987O
+ 0.316 CO. (3.60)

5° For x2 < 0.158 x3, from (3.58) follows

0.329 x3 Pb3O4 + x2 C + (0.316 x3 – 2 x2) CO
� x3 Pb0.987O + (– x2 + 0.316 x3) CO2, (3.61)

where x2 and x3 are arbitrary real numbers.
6° For x2 > 0.316 x3, the reaction (3.58) becomes

0.329 x3 Pb3O4 + x2 C + (x2 – 0.316 x3) CO2

� x3 Pb0.987O + (2 x2 – 0.316 x3) CO, (3.62)

where x2 and x3 are arbitrary real numbers.
7° For x2 = 0, from (3.54) one obtains this particular

reaction

x1 Pb2O3 + (x1/3 + 0.316 x3) CO
� x3 Pb0.987O + (2 x1/3 – 0.329 x3) Pb3O4

+ (x1/3 + 0.316 x3) CO2, (3.63)

where x1 and x3 are arbitrary real numbers.
From (3.63) follows these inequalities

x1/3 + 0.316 x3 > 0 and 2 x1/3 – 0.329 x3 > 0.

From this system follows this inequality

– x1/0.048 < x3 < 2 x1/0.987. (3.64)

The reaction (3.63) holds if only if the inequality
(3.64) is satisfied.

8° For x1 < 0.4935 x3, from (3.63) follows

x1 Pb2O3 + (0.329 x3 – 2 x1/3) Pb3O4 + (x1/3 +
0.316 x3) CO � x3 Pb0.987O

+ (x1/3 + 0.316 x3) CO2, (3.65)

where x1 and x3 are arbitrary real numbers.
9° For x1 = 0.4935 x3, from (3.63) follows

0.4935 Pb2O3 + 0.4805 CO
� Pb0.987O + 0.4805 CO2. (3.66)
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10° For x3 = 0, from (3.54) one obtains this particular
reaction

x1 Pb2O3 + x2 C � (2 x1/3) Pb3O4

+ (– x1/3 + 2 x2) CO + (x1/3 – x2) CO2, (3.67)
(3 x2 < x1 < 6 x2).

11° For x1 = 3 x2, from (3.67) follows

3 Pb2O3 + C � 2 Pb3O4 + CO. (3.68)

12° For x1 = 6 x2, from (3.67) one obtains

6 Pb2O3 + C � 4 Pb3O4 + CO2. (3.69)

13° For x1 < 3 x2, from (3.67) follows

x1 Pb2O3 + x2 C + (x2 – x1/3) CO2

� (2 x1/3) Pb3O4 + (– x1/3 + 2 x2) CO, (3.70)

where x1 and x2 are arbitrary real numbers.
14° For x1 > 6 x2, the reaction (3.67) transforms into

x1 Pb2O3 + x2 C + (x1/3 – 2 x2) CO
� (2 x1/3) Pb3O4 + (x1/3 – x2) CO2, (3.71)

where x1 and x2 are arbitrary real numbers.
The authors of the article59 gave this statement: Bal-

ancing the chemical equation (with three molecules)
means finding the smallest whole numbers x1, x2 and x3

(as its coefficients).
The above statement does not hold for every reaction.

It has just particular meaning and holds if only if a
chemical reaction has atoms with integers, in an opposite
case, when the reaction contains atoms with fractional
oxidation numbers, it does not hold. For example, see the
previous reactions (3.57), (3.58) and so on.

Also, in the article59 is »balanced« this reaction

x1 Cu + x2 HNO3 � x3 Cu+2

+ x4 NO2 + x5 NO3
– + x6 H2O, (3.72)

like this

3 Cu + 4 HNO3 � 3 Cu+2

+ 2 NO + 2 NO3
– + 2 H2O. (3.73)

The last reaction (3.73) is wrong.
The correct form of balanced reaction (3.72) is

x1 Cu + x2 HNO3 � x1 Cu+2 + (x2/2) NO2

+ (x2/2) NO3
– + (x2/2) H2O, (3.74)

where x1, x2 > 0 are arbitrary real numbers.
Next reaction was »balanced« in59 too

x1 OH– + x2 SnO2
–2 + x3 Bi(OH)3

� x4 Bi + x5 SnO3
–2 + x6 H2O, (3.75)

in this form

0 OH– + 3 SnO2
–2 + 2 Bi(OH)3

� 2 Bi + 3 SnO3
–2 + 3 H2O. (3.76)

The general form of the reaction (3.75) is

x1 OH– + x2 SnO2
–2 + (2x2/3 – x1/3) Bi(OH)3

� (2x2/3 – x1/3) Bi
+ x2 SnO3

–2 + x2 H2O, (x1 < 2x2). (3.77)

For x1 = 0 and x2 = 3, from (3.77) immediately fol-
lows (3.76), like a particular reaction.

Another reaction is »balanced« in59

x1 CH3CH2OH + x2 Cr2O7
–2 + x3 H+

� x4 CH3CO2H + x5 Cr+3 + x6 H2O, (3.78)

in this form

3 CH3CH2OH + 2 Cr2O7
–2 + 16 H+

� 3 CH3CO2H + 4 Cr+3 + 11 H2O. (3.79)

The general form of the reaction (3.78) is

x1 CH3CH2OH + x2 Cr2O7
–2

+ (– 4x1 + 14 x2) H+ � x1 CH3CO2H
+ 2x2 Cr+3 + (– x1 + 7 x2) H2O, (3.80)

(0 < x1 < 7x2/2).

For x1 = 3 and x2 = 2, from (3.80) immediately fol-
lows (3.79), like a particular reaction.

In59 the authors only determined the particular reac-
tions (3.76) and (3.79), but considered reactions (3.75)
and (3.78) have general forms with two arbitrary param-
eters, given by (3.77) and (3.80), respectively.

X. As a last paradox we discovered in the theory of
balancing chemical equations is the case considered be-
low. The authors of the article60 studied this chemical re-
action

CH0.686O0.32 + w H2O + m O2 + 3.76 m N2

� x1 H2 + x2 CO + x3 CO2 + x4 H2O
+ x5 CH4 + 3.76 m N2. (3.81)

Immediately from (3.81) we have seen its absurdity.
In this reaction H2O appears as a reactant and as a prod-
uct at the same time. Is it logical? No! It is just one
thing.

Another illogical thing is not reacted N2. Nitrogen
appears in (3.81) as reactant 3.76m N2 and 3.76m N2 as a
product at the same time.

Also, the treatment of hydrogen as a product is illogi-
cal. Burning of CH0.686O0.32 presented by (3.81) does not
give H2 as a product!

We think that the reaction

x1 CH0.686O0.32 + x2 O2 + x3 N2 � x4 CO
+ x5 CO2 + x6 H2O + x7 CH4 + x8 N2O3, (3.82)

which represents a correct version of (3.81) is very in-
teresting for chemistry.
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From (3.82) one obtains this scheme
C

H
0.

68
6O

0.
32

O
2

N
2

C
O

C
O

2

H
2O

C
H

4

N
2O

3

C 1 0 0 –1 –1 0 –1 0
H 0.686 0 0 0 0 –2 –4 0
O 0.32 2 0 –1 –2 –1 0 –3
N 0 0 2 0 0 0 0 –2

Reaction matrix A of (3.82) has this form

A =

1000 0 0 1 1 0 1 0

0686 0 0 0 0 2 4 0

0320 2 0 1 2 1 0 3

0 000

.

.

.

.

− − −
− −

− − − −
0 2 0 0 0 0 2−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The reaction (3.82) reduces to the following system
of linear equations

x1 = x4 + x5 + x7,
0.686 x1 = 2 x6 + 4 x7, (3.83)

0.32 x1 + 2 x2 = x4 + 2 x5 + x6 + 3 x8,
2 x3 = 2 x8.

The general solution of the system (3.83) is

x5 = 1.977 x1/4 + x2/2 – 3 x3/4 – 3 x4/4,
x6 = – 1.337 x1/2 + x2 – 3 x3/2 + x4/2, (3.84)

x7 = 2.023 x1/4 – x2/2 + 3 x3/4 – x4/4,
x8 = x3,

where xi > 0 (1 � i � 4) are arbitrary real numbers.
Since xi > 0 (5 � i � 8), then from (3.84) one obtains

this system of inequalities

1.977 x1 + 2 x2 – 3 x3 – 3 x4 > 0,
– 1.337 x1 + 2 x2 – 3 x3 + x4 > 0, (3.85)

2.023 x1 – 2 x2 + 3 x3 – x4 > 0.

From (3.85) immediately follows this inequality

1.337 x1 – x4 < 2 x2 – 3 x3 < 2.023 x1 – x4. (3.86)

Reaction (3.82) holds if and only if the condition
(3.86) is satisfied.

The reaction (3.82) contains three subgenerators
which induce a topology of its solutions, but we omitted
it, since it will be a subject of the author’s next research.

The other particular cases of (3.82) are not consid-
ered because we took into account the Remark 3.7.

For instance, for x1 = 2, x2 = 4, x3 = 2 and x4 = 1, from
(3.84) one obtains this particular solution x5 = 0.7385, x6

= 0.163, x7 = 0.2615 and x8 = 2. Then (3.82) becomes

2 CH0.686O0.32 + 4 O2 + 2 N2 � CO
+ 0.7385 CO2 + 0.163 H2O

+ 0.2615 CH4 + 2 N2O3.

Now, we shall determine the minimal coefficients of
the reaction (3.82). The Moore–Penrose generalized ma-
trix A+ will have this form

A+ =

0334436538275454 0 037800281937753

0164755899838

. .

.

−
− 609 0 019118215665491

0123566924878957 0 0143386617

.

. .− 49118

0338363333974391 0 077822527216911

0 2559853

−
−

. .

. 84055086 0 068263419384166

0 257141220018618 014519

.

. .− 3039626989

0 071214743695069 0183886228538830

012

− −. .
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
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.
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01715167592608

. .
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−
−
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. . 84216
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−
−

. .
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.

. .− 7446471929

0 044141518588323 0 033106138941242

0128

. .

.− 637569445621 0153521822915784−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

The reaction (3.82) reduces to the matrix form (3.45),
whose general solution is given by the expression (3.46).

For a = (1, 1, 1, 1, 1, 1, 1, 1)T, one obtains

xmin = (x1, x2, x3, x4, x5, x6, x7, x8)
T,

where

x1 = 1.241594646560723466,
x2 = 1.574780831709873263,
x3 = 0.568914376217595052,
x4 = 0.721001830633894027,
x5 = 0.433611414778957395,
x6 = 0.251904161474584061,
x7 = 0.086981401147872044,
x8 = 0.568914376217595052.

5 DISCUSSION

We cannot always trust chemical experiments! We
cannot always trust mathematics either, for it can mis-
lead us unless we define away the problem area. How-
ever, we surely can trust pure logic – no questionable ex-
periments or unusual mathematical operations.

Are they methods when somebody can find counter-
examples on every step? Obviously, the answer is nega-
tive! It is merely a pale picture of the old chemically irra-
tional traditionalism of the past chemistry.

As it is showed by all counterexamples given in this
work the traditional procedures for balancing chemical
reactions are inconsistent. These particular procedures,
we hope that they are the last traditional unsuccessful ap-
proach of balancing chemical reactions. Long time ago
chemistry lost the battle with mathematics in sense of
balancing chemical reactions.

Before we finish this discussion, we would like to
stress here, that our facts for arguing are founded by vir-
tue of scientific results.
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From current view point of balancing chemical equa-
tions, we feel free to tell that traditional approach of bal-
ancing chemical reactions is only a history, and Jones’
problem44, which was as one of the hardest problems of
balancing chemical reactions is completely solved45.

There exists a completely satisfactory ways of avoid-
ing paradoxes7,34,45,46,48–50. The theory used is based on the
idea of formal approach of balancing chemical reactions.
In these works completely new general highly sophisti-
cated methods are developed for balancing chemical re-
actions and their stability by virtue of the theory of gen-
eralized matrix inverse using Moore–Penrose, Drazin
and von Neumann matrices. By these methods chemistry
is cleaned from old traditional inconsistent procedures
for balancing chemical reactions, such that is open a
brand new direction for development of this topic in
chemistry and its foundation on genuine principles. That
is the newest trend in chemistry about this issue, which
showed that traditionalism in chemistry is over.

6 CONCLUSION

By this work the consideration of paradoxes in chem-
istry will begin very seriously as a special object and in
any way it will increase researchers’ carefulness to avoid
the appearance of paradoxes. Sure, no perfect science!
Appearance of paradoxes is always possible.

It is more than certain, that this work opened doors
for the next research in chemistry for its diagnostic of
paradoxes and their resolution. It will accelerate the new-
est contemporary research in chemistry and it will de-
stroy all barriers which hamper the development of
chemistry and lay its foundation on genuine scientific
principles.

This work affirms:
• that all formally provable mathematical methods are

true if chemical reactions are considered as a consis-
tent formal system,

• that all mathematical truths can be formally provable,
and

• that the new branch Foundation of Chemistry
proves the consistency and completeness of the for-
mal approach of balancing chemical reactions and
that it will be a special kind of chemistry, i.e., it will
be a finite theory which contains only perfectly well
known concepts with true axioms and positive con-
clusions. It affirms that the principles used in the
mathematical approach of balancing chemical reac-
tions, will not lead to contradictions.
After that, what is proven about the paradoxes in this

work is there a general chemistry? Or it should be
refounded on genuine principles as elementary chemis-
try?

The replies to these two questions are looking for
deep reform in chemistry in a formalistic way, because in
the opposite case paradoxes will be a stumbling block for

a long time. To avoid this awkward position, reforms in
chemistry are needed as soon as possible.

Sure, that the above topic is considered in a rough
form, but it happens with every pioneer’s job.
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