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The dynamic-compaction method was adopted for consolidating a railway foundation of blowing sand reclamation in the North
Bay of Guangxi, China. Based on the physical characteristics of the sands, the parameters of the infinite-finite elements for an
extended Drucker-Prager model were obtained with the soil tests. This model was used to analyze the area of dynamic compac-
tion and the mechanical behaviors of the sands under dynamic compactions with a dynamic explicit analysis. By comparing the
test results, we demonstrated that dynamic compaction was an effective method for a railway foundation of blowing sand
reclamation, and the numerical-analysis model based on the infinite-element method was a very powerful tool used in the actual
conditions, having no boundary reflection under dynamic compactions.
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Za utrditev podlage `elezni{ke proge v North Bay, Guangxi, Kitajska, je bila uporabljena dinami~na metoda kompaktiranja. Na
podlagi fizikalnih lastnosti peskov in preizkusov tal so bili dobljeni parametri neskon~no-kon~nih elementov za raz{irjeni
Drucker-Pragerjev model. Tak model in dinami~na eksplicitna analiza sta bila uporabljena za analizo podro~ja dinami~nega
kompaktiranja in mehanskih lastnosti peska pri dinami~nem kompaktiranju. S primerjavo rezultatov preizkusov smo pokazali,
da je dinami~no kompaktiranje peska u~inkovita metoda za utrjevanje podlage `elezni{ke proge. Model za numeri~no analizo,
ki temelji na metodi kon~nih elementov, je mo~no orodje brez omejitev v realnih razmerah dinami~nega kompaktiranja.

Klju~ne besede: neskon~ni element, dinami~no kompaktiranje, droben pesek, eksplicitna analiza, podlaga `elezni{ke proge

1 INTRODUCTION

To construct highways and railways in the coastal
region, in many sections blowing sand reclamation is
used for constructing the foundation of the roads. The
key problem of this kind of engineering is how to con-
struct, economically and efficiently, large volumes of
blowing-sand-reclamation foundations. There are many
methods for consolidating a foundation of blowing sand
reclamation, such as vibro-replacement stone pile, dyna-
mic compaction, water-soil whip pile, and filler-vibration
impact. For an estimation of the main construction para-
meters (the effective strengthening depth and radius) in
the foundation treatment with the dynamic-compaction
method, Li1 built a three-dimensional finite-element
model with LS-DYNA to get a numerical calculation of
the single-point pounder strike of the kinetics process (a
dynamic-compaction-method estimation based on a three-
dimensional soil-dynamics numerical simulation). Li et
al.2 developed an estimation method and a formula for a
dynamic-compaction foundation settlement in collapsi-
ble loess areas with a dynamic-compaction foundation-
settlement-theory deduction, error analysis and mea-

sured-data verification. Mostafa3 developed two-dimen-
sional and three-dimensional finite-element models to
study the dynamic compaction in cohesive soils.

In order to analyze the effect of the dynamic-compa-
ction method, which is applied in the blowing-sand-
reclamation projects in the coastal regions, we built an
infinite-finite-element coupling model of the blowing-
sand-reclamation foundation by introducing the
infinite-element method providing the boundaries of the
three-dimensional numerical model.

2 SPATIAL INFINITE-ELEMENT METHOD

Infinite elements are used for the boundary-value
problems defined in unbounded domains or the pro-
blems, in which the region of interest is small in size,
compared to the surrounding medium, and are usually
used in conjunction with finite elements.

The static behavior of the infinite elements is based
on modeling the basic solution variable u (in the stress
analysis u is a displacement component) with respect to
the spatial distance r measured from a "pole" of the solu-
tion, so that u�0 as r�#, and u�# as r�0. The
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interpolation provides the terms of order 1/r, 1/r2 and,
when the solution variable is a stress-like variable (such
as the pore liquid pressure in an analysis of the flow
through a porous medium), also 1/r3. The far-field
behavior in many common cases, such as a point load on
a half-space, is thereby included. This modeling is
achieved by using the standard cubic interpolation for
u(s) in –1 � r � 1, where s is a mapped coordinate that
is chosen so that the mapping causes r(s). We obtained a
three-dimensional model of domains reaching infinity by
combining this interpolation in the s-direction of a pro-
duct form with the standard linear or quadratic interpola-
tion in orthogonal directions in the mapped space.

Three-dimensional infinite elements only map the
infinite domain along one direction, as shown on Figure
1, where the elements along the x and y directions are
finite, while the z direction is infinite. After using a coor-
dinate transformation, we can map the practical element
of the xyz coordinates in a spatial cube element where
the length of each side is 2.

The conversion relationship between the whole coor-
dinates x – y – z and the local coordinate is:
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in which n is the node number, Mi is the mapping func-
tion, and xi, yi, zi are the nodal coordinates:
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When practical elements are mapped to be parent
elements, we can analyze the characteristics of the parent
elements. If we assume that the parent elements use the
same shape function as the 8-node spatial elements, they

can couple with the 8-node spatial finite elements. The
selection of a displacement model is as follows:
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where n is the node number, Ni is the mapping
function and ui, vi, wi are the nodal displacements:
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3 CONSTITUTIVE MODEL OF THE SAND
SOILS

For a non-metal particle material such as soil and
rock, we can adopt a D-P model that can simulate a
non-metal material, extending its function on the basis of
an ideal elastic-plastic model.

The Drucker-Prager ideal elastic-plastic model is one
of the earliest constitutive models for elastic-plastic
geotechnical materials; its parameters are few and the
calculation is simple.4,5 Its yield-criterion expression is
shown in equation (5):

F J I Kij( )" �= − − =2 1 0 (5)

where J2 is the second invariant of the stress-deviation
tensors, I1 is the first invariant of the stress deviation
tensors and �, K are the material constants. As Drucker
and Prager derived the relations between �, K and the
material constants C, ! of the Mohr-Coulomb criterion
is shown in equation (6):
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Drucker and Prager (1952) proposed a yield condi-
tion, according to which the yield surface is a cone in the
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Figure 1: Node spatial mapping of an infinite element: a) practical element, b) parent element
Slika 1: Prostorska razporeditev vozli{~ neskon~nega elementa: a) prakti~ni element, b) osnovni element



stress space, as seen on Figure 2, on the  -plane, while
its yield curve is a circle that is inscribed in the Mohr-
Coulomb yield curve; in the stress space, its yield
surface is a cone, while the center axis and the isocline
are coincident.

The D-P model considers that when the material is in
its elastic phase (F < 0) or unloading phase (F = 0, and
�F < 0), the stress-strain relation shown in equation (7)
applies:

" "� � ��ij KK ij ijK G= + 2 (7)

If F = 0 and the loading is (�F > 0), the stress-strain
relation shown in equation (8) applies:
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�ij is the Kronecher sign; when i = j, �ij = 1; when i ( j,
�ij = 0; "ij indicates the stress tensors, �ij indicates the
strain tensors; K is the volume-elastic modulus; G is the
sheer-elastic modulus.

4 LINEAR DRUCKER-PRAGER MODEL

The linear model is written in terms of all three stress
invariants. It provides for a possible noncircular yield
surface in the deviatoric plane matching different yield
values of the triaxial tension and compression, the
associated inelastic flow in the deviatoric plane, the
separate dilation and friction angles.

(1) Yield criterion

The linear Drucker-Prager criterion is written as:

F t d= − − =p tan � 0 (9)
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�(�,fi) is the slope of the linear yield surface in the p – t
stress plane and is commonly referred to as the friction
angle of the material; d is the cohesion of the material;
K(�,fi) is the ratio of the yield stress in the triaxial ten-
sion to the yield stress in the triaxial compression, thus,
controlling the dependence of the yield surface on the
value of the intermediate principal stress (as seen in
Figure 3). � is the temperature, fi(i = 1, 2, ...) refers to
the other predefined field variables.

The cohesion d of the material is related to the input
data as:
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Figure 3: Typical yield/flow surfaces
Slika 3: Zna~ilna mejna povr{ina plasti~nosti

Figure 2: Generalized von Mises yield surface
Slika 2: Posplo{ena povr{ina meje plasti~nosti po von Misesu

Figure 4: Yield surface and flow direction
Slika 4: Meja plasti~nosti in smer toka materiala



where "c is the uniaxial compression yield stress, "t is
the uniaxial tension yield stress and � is the shear stress.

(2) Plastic flow

G is the flow potential, chosen in this model as:

G t p= − tan)1 (12)

where )1(�,fi) is the dilation angle in the p – t plane. A
geometric interpretation of ) is shown in the p – t dia-
gram of Figure 4. In the case of the hardening defined
for the uniaxial compression, this flow-rule definition
precludes the dilation angles tan ) > 3. This restriction
is not seen as a limitation since it is unlikely that it will
apply to real materials.

(4) Non-associated flow

The non-associated flow implies that the material
stiffness matrix is not symmetric; therefore, the unsym-
metrical matrix storage and solution scheme should be
used. If the difference between � and ) is not large and
the region of the model, in which the inelastic deforma-
tion is occurring is confined, it is possible that a sym-
metric approximation of the material stiffness matrix will
give an acceptable rate of convergence and the unsym-
metrical matrix scheme may not be needed.

5 LOADING FORM OF DYNAMIC
COMPACTION

According to the previous research and test demon-
strations, in the process of a pounder’s collision with and
impact on a foundation, the contact stress has only one
significant peak value on the time-history curve and its
duration is very short, around 0.1 s. The impact load is
simplified into the load of the triangle form, as seen on
Figure 5. The values of tn, tr, Pmax from this figure can be
measured in the test fields or estimated with the follow-
ing formulas:
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where V0 is the landing speed of the pounder, m is the
pounder quality, r is the pounder radius and S is the
elastic constant:

S rE= −2 1 2( )� (14)

As the deformation modulus of the soil is being con-
tinuously adjusted, the contact stress and the contact
time also undergo continuous changes. We fully consi-
dered these changes in the simulation, adjusting, on the
basis of the deformation modulus, the contact stress and
the contact time for each analysis step, where one
pounder strike is defined as one analysis step, lasting for
0.3 s, so that the total analysis time is 2.1 s.

6 PROJECT APPLICATION

A section of the railway branch between DaLanPing
and BaoShuiGang (CK12+ 000 ~ CK17+300) is involved
in a blowing-sand-reclamation project applying to a litto-
ral area with the total length of the dynamic compaction
area set to be 150 m.

The section from DK15+315.64 to DK15+515.64
was regarded as the test section. According to the depth
range covered with the standard penetration test, the area
was geotechnically divided into 3 layers: the filling sand,
the fine sand and the mud.

7 NUMERICAL ANALYSIS

7.1 Analysis model

With the ABAQUS finite-element software, simu-
lating the foundation of blowing sand reclamation and
using a dynamic-compaction method, we built two
three-dimensional entity models on the basis of the
finite-element model and infinite-finite element coupling
model, aiming to simulate the dynamic compaction pro-
cess for the test section.
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Figure 5: Strong-pounder dynamic-effect model
Slika 5: Model dinami~nega u~inka mo~nega tolka~a

Figure 6: Finite-element method
Slika 6: Metoda kon~nega elementa



The factors influencing the foundation of blowing
sand reclamation, included in the dynamic-compaction
method, are many and the deformation characteristics of
the soil body are also very complicated, so we intro-
duced the following assumptions:
1) The soil body in the model can be regarded as homo-

geneous, isotropic and elastic-plastic infinite spatial.
2) No effects of the groundwater need to be considered.
3) The pounder is simplified into a force, that is, a force

is applied on the soil body.
4) The interface between the above force and the tan-

gential force of the blowing sand reclamation can be
ignored.
The finite-element model (model 1) is based on the

following parameters: the width of the top surface of the
roadbed is 20 m, the width of the bottom surface is 40 m,
the height is 10 m, the length is 10 m, and the grid size is
1 m. The tamper weight is 150 kN, the tamping energy is
2600 kN m.

The infinite-finite-element coupling model (model 2)
is based on the finite-element model. The boundary ele-
ments for four weeks and the bottom elements can be
replaced with the spatial infinite elements. As the infinite
elements belong to the boundary elements, we do not need
to set the boundary conditions, as shown in Figures 6
and 7.

7.2 Material model parameters

The physical and mechanical parameters of different
sections between the top and the bottom of the filling-
sand layer are presented in Table 1.

Table 1: Physical and mechanical parameters of the filling-sand layer
Tabela 1: Fizikalni in mehanski parametri plasti polnilnega peska

Sand
layer E/MPa μ �/° K )/° �p "/kPa

0≈1 m 8 0.3 58.5 0.778 0 0 100

1≈2 m 14.5 0.3 58.5 0.778 0 0 140
2≈5 m 19 0.3 58.5 0.778 0 0 180
5≈6 m 8 0.3 58.5 0.778 0 0 100
6≈8 m 14.5 0.3 58.5 0.778 0 0 140
8–12 m 18 0.3 58.5 0.778 0 0 180

We simulated and analyzed the dynamic compaction
process for different test sections with two models, and
compared the analysis results with the measured values
of the field dynamic-penetration test. The surface-settle-
ment data of dynamic compaction for the process of 7
strikes is presented in Table 2 and the dynamic-compac-
tion settlements are plotted in Figure 8.

As shown in the above figure and table, in the nume-
rical analysis of consolidating the foundation’s capacity
for blowing sand reclamation, the settlement amount for
model 1 using the finite-element method is smaller than
for model 2 using the infinite-finite element method with
the infinite element as the boundary condition. The
values of model 2 are close to the measured values of the
field test, showing that this model can simulate the prac-
tical boundary conditions well by introducing infinite
elements to the analysis model.

In the process of dynamic compaction, when the
number of the rammer strikes is 7, the settlement tends to
be stable and the measured value is 3 cm, reaching the
settlement requirement of dynamic compaction.

8 CONCLUSIONS

On the basis of an analysis of the foundation’s capa-
city for blowing sand reclamation carried out with the
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Figure 8: Relation curve of dynamic pit settlement and times
Slika 8: Odvisnost krivulje dinami~nega posedanja od ponovitev

Table 2: Settlement of dynamic compaction (cm)
Tabela 2: Posedanje pri dinami~nem kompaktiranju (cm)

times test model 1 model 2
1 35.7 36.0 40.0
2 19.0 21.0 25.0
3 16.7 12.0 14.0
4 12.3 10.0 12.0
5 8.7 5.0 7.0
6 6.0 3.0 5.5
7 3.0 1.0 2.0

total 101.4 88.0 105.5

Figure 7: Coupling method of an infinite-finite element
Slika 7: Zdru`ena metoda neskon~nega-kon~nega elementa



dynamic-compaction method, and a comparison of its
results with the measured values, we can draw the
following conclusions:
1) The model can simulate the practical conditions well

by introducing the infinite elements as boundaries;
2) The boundary conditions have a big influence on the

calculation results of the finite-element method;
3) Compared with the measured values, the values of

model 2 that used the infinite element as the boun-
dary condition are close to the measured values;

4) If the number of the rammer strike is 7, the settle-
ment tends to be stable, reaching the requirement of
dynamic compaction.
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