NON-SINGULAR METHOD OF FUNDAMENTAL SOLUTIONS FOR THE DEFORMATION OF TWO-DIMENSIONAL ELASTIC BODIES IN CONTACT

Qingguo Liu1, Božidar Šarler1,2,3

1University of Nova Gorica, Nova Gorica, Slovenia
2IMT, Ljubljana, Slovenia
3Center of Excellence BIK, Solkan, Slovenia
qingguo.liu@ung.si, bozidar.sarler@imt.si

1 INTRODUCTION

The physical modelling of metallurgical processes consists of modelling the relations between the process parameters and the macroscopic velocity, temperature, concentration, and stress fields, and the relations between these fields and the evolution of the microstructure. In such multi-scale modelling, the transport phenomena and solid mechanics on the level of microstructure play an important role and have to be properly computationally modelled.2,3 We have, in the recent years, developed a completely new generation of meshless methods, based on local collocation with radial basis functions, for solving these models on different scales. The main advantage of the method is in their similar structure in 2 and 3D, no need for polygonisation, ease of coding, high accuracy, robustness and flexibility. The method has already been developed for modelling very complex phenomena such as macro-segregation on the macroscopic level as well as dendritic growth on the micro-level.5 An extension of the meshless method, based on a collocation with a fundamental solution (Method of Fundamental Solutions (MFS)), for the simulation of the deformation of the multiple grains in an ideal mechanical contact is presented in the present paper. An extension of the represented method with anisotropic and plastic deformation capabilities will be used in our future thermo-mechanical calculations for the microstructure evolution in metallurgical processes.6

The main idea of MFS consists of approximating the solution of the partial differential equation by a linear combination of fundamental solutions, defined in source points. The expansion coefficients are calculated by collocation or least-squares fit of the boundary conditions. The fundamental solution is usually singular in the
source points and this is the reason why the source points are located outside the domain in the MFS. Then, the original problem is reduced to determining the unknown coefficients of the fundamental solutions and the coordinates of the source points by requiring the approximation to satisfy the boundary conditions and hence solving a non-linear problem. If the source points are a priori fixed, then the coefficients of the MFS approximation are determined by solving a linear problem. The MFS has become very popular in recent years because of its simplicity. Clearly, it is applicable when the fundamental solution of the partial differential operator of the governing equation (or of the system of governing equations) of the problem under consideration is known. The MFS has been widely used\(^\text{7}^\) for the solution of problems in linear elasticity.

In the traditional MFS, the fictitious boundary, positioned outside the problem domain, is required to place the source points. This is very impractical or even impossible, particularly when solving multi-body problems. In recent years, various efforts have been made, aiming to remove this barrier in the MFS, so that the source points can be placed directly on the real boundary.\(^\text{8-12}\) In the present paper, we use a non-singular MFS based on\(^\text{9}\) to deal with the 2D multi-body isotropic elasticity problems. The application of a non-singular method of fundamental solutions (NMFS) in two-dimensional isotropic linear elasticity has been originally developed in.\(^\text{13}\) We extend these developments to multi-body problems in the present paper. We respectively use area-distributed sources covering the source points to replace the concentrated point sources. This NMFS approach also does not require information about the neighbouring points for each source point, thus it is a truly mesh-free boundary method. The derivatives of the fundamental solution in the distributed source points are calculated by adopting the methodology in\(^\text{9}\) from the Laplace to Kelvin fundamental solution.

The rest of the paper is structured as follows. The solution procedure is given for MFS and NMFS. Numerical results with 1, 4 and 9 bodies in contact are given, followed by conclusions and further research.

2 GOVERNING EQUATIONS OF ELASTICITY FOR THE MULTI-BODY PROBLEM

We consider a two-dimensional domain \(\Omega\) with the boundary \(\Gamma\), divided into \(M\) sub-domains \(\Omega_i = \Omega_1 \cup \Omega_2 \cup \cdots \cup \Omega_M\) with boundaries \(\Gamma = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_M\) as shown in Figure 1. Each of the domains is occupied by an isotropic, ideally elastic material with different material properties, in general. Let us introduce a two-dimensional Cartesian coordinate system with orthonormal base vectors \(\mathbf{i}_x\) and \(\mathbf{i}_y\), and coordinates \(p_x\) and \(p_y\) of point \(P\) with the position vector \(\mathbf{p} = p_x \mathbf{i}_x + p_y \mathbf{i}_y\). The solid is governed by Navier’s equations for plane strain problems, which are the conditions for equilibrium, expressed with the displacement \(\mathbf{u}\). The following governing equations are valid in the sub-domain \(\Omega_i, i = 1, 2, \ldots, M, \mathbf{p} \in \Omega_i\):

\[
\begin{align*}
\left(1 - 2\nu_i\right) \frac{\partial^2 u_{x_i}(\mathbf{p})}{\partial p_x^2} + \frac{\partial^2 u_{y_i}(\mathbf{p})}{\partial p_y^2} + \frac{1}{2} \frac{\partial^2 u_{x_i}(\mathbf{p})}{\partial p_x \partial p_y} &= 0 \\
\left(1 - 2\nu_i\right) \frac{\partial^2 u_{y_i}(\mathbf{p})}{\partial p_x^2} + \frac{\partial^2 u_{x_i}(\mathbf{p})}{\partial p_y^2} + \frac{1}{2} \frac{\partial^2 u_{y_i}(\mathbf{p})}{\partial p_x \partial p_y} &= 0
\end{align*}
\]

(1)

where \(\nu_i\) represents the Poisson ratio in the subdomain \(\Omega_i\). The boundary \(\Gamma\) is divided into two not necessarily connected parts \(\Gamma = \Gamma^D + \Gamma^F\). On the part \(\Gamma^D\) the displacement (Dirichlet) boundary conditions are given, and on the part \(\Gamma^F\) the traction (Neumann) boundary conditions are given:

\[
\begin{align*}
\chi_i u_{x_i}(\mathbf{p}) + \chi_i u_{y_i}(\mathbf{p}) + \cdots + \chi_i u_{2M}(\mathbf{p}) &= \bar{u}_i(\mathbf{p}) \\
\chi_i t_{x_i}(\mathbf{p}) + \chi_i t_{y_i}(\mathbf{p}) + \cdots + \chi_i t_{2M}(\mathbf{p}) &= \bar{t}_i(\mathbf{p})
\end{align*}
\]

(2)

where:

\[
\chi_i = \begin{cases}
1, & \mathbf{p} \in \Gamma^D \\
0, & \mathbf{p} \notin \Gamma^D
\end{cases}
\]

(3)

On the interface between different regions, displacement continuity and traction equilibrium conditions have been assumed:

\[
\begin{align*}
\bar{u}_{x_i}(\mathbf{p}) - \bar{u}_{x_i}(\mathbf{p}) &= 0 & \xi = x, y, & \mathbf{p} \in \Gamma_i \cap \Gamma_k \\
\bar{t}_{x_i}(\mathbf{p}) + \bar{t}_{x_i}(\mathbf{p}) &= 0 & \xi = x, y, & \mathbf{p} \in \Gamma_i \cap \Gamma_k
\end{align*}
\]

(4)

\(m, k = 1, 2, \ldots, M\)

The strains \(e_{x\xi}; \xi = x, y\) are related to the displacement gradients by:

\[
e_{x\xi} = \frac{1}{2} \left(\frac{\partial u_x}{\partial p_\xi} + \frac{\partial u_\xi}{\partial p_x} \right)
\]

(5)

Figure 1: A scheme of the multi-region problem. Each of the sub-domains can have different elastic properties.

Slika 1: Shema problema z več obmožci. Vsako podobmožje ima lahko različne elastične lastnosti.
The stress components $\sigma_{xx}, \sigma_{yy}, \xi = x, y$ are for the plane-strain cases related to the strains through Hooke’s law:
\[
\sigma_{xx} = \lambda \varepsilon_{xx} + 2\mu \varepsilon_{zz}
\]
where $\mu = E / (2(1 + \nu))$ is the shear modulus of elasticity, λ is known, as the modulus of elasticity, or Young’s modulus, $\lambda = \nu E / (1 - 2\nu)$ is the Lamé constant, and δ_{zz} is the Kronecker delta:
\[
\delta_{zz} = \begin{cases}
1, & \xi = \xi \\
0, & \xi \neq \xi
\end{cases}
\]

3 SOLUTION PROCEDURE

The fields on each of the sub-domains are represented by collocation with fundamental solutions in the boundary points. The collocation needs to satisfy the boundary conditions between different regions and outer boundaries. In a numerical implementation of MFS and NMFS, we assume that one boundary collocation point belongs to only two regions at once. In order to keep the formulation simple we do not put the discretisation points on the corners that might belong to three or more regions at once. Explicit expressions for Kelvin’s fundamental solution of elastostatics, used in the collocation, are given in a two-dimensional plane-strain situation by:
\[
U_{zz}(p,s) = \frac{1}{8\pi \mu(1-\nu)} \left((3-4\nu)\ln\left(\frac{1}{r}\right)\delta_{zz} + \left(\frac{p_x - s_x}{r^2}\right)\right)
\]
\[
\xi, \xi = x, y
\]
where the material properties depend on the position in a subdomain, $U_{zz}(p,s)$ represents the displacement in the ξ direction at point p due to a unit point force acting in the ξ direction at point s. $r = ((p_x - s_x)^2 + (p_y - s_y)^2)^{1/2}$ is the distance between the collocation point p and the source point s.

It can be shown that the following u_1 and u_1 satisfy the governing Eq. (1):
\[
u_s(p) = \sum_{s=x}^{N} \sum_{n=1}^{N} \tilde{U}_{xx}(p,p_n)\alpha_n + \sum_{n=1}^{N} \tilde{U}_{yy}(p,p_n)\beta_n
\]
\[
u_s(p) = \sum_{n=1}^{N} \tilde{U}_{xx}(p,p_n)\alpha_n + \sum_{n=1}^{N} \tilde{U}_{yy}(p,p_n)\beta_n
\]
\[
p \neq \sum_{n=1}^{N} \alpha(p_n)R
\]

The tractions can be expressed as:
\[
t_x(p) = \sum_{s=x}^{N} \tilde{T}_{xx}(p,p_n)\alpha_n + \sum_{n=1}^{N} \tilde{T}_{yy}(p,p_n)\beta_n
\]
\[
t_y(p) = \sum_{n=1}^{N} \tilde{T}_{xx}(p,p_n)\alpha_n + \sum_{n=1}^{N} \tilde{T}_{yy}(p,p_n)\beta_n
\]

where:
\[
\tilde{T}_{xx}(p,p_n) = \frac{2\nu(1-\nu)\partial U_{xx}(p,p_n)}{1-2\nu} + \frac{2\nu\partial U_{yy}(p,p_n)}{1-2\nu}n_x + \frac{\partial U_{zz}(p,p_n)}{\partial p_x}n_y + \frac{\partial U_{zz}(p,p_n)}{\partial p_y}n_x + \frac{\partial U_{zz}(p,p_n)}{\partial p_y}n_y
\]
\[
\tilde{T}_{yy}(p,p_n) = \frac{2\nu(1-\nu)\partial U_{yy}(p,p_n)}{1-2\nu} + \frac{2\nu\partial U_{xx}(p,p_n)}{1-2\nu}n_y + \frac{\partial U_{zz}(p,p_n)}{\partial p_x}n_y + \frac{\partial U_{zz}(p,p_n)}{\partial p_y}n_x + \frac{\partial U_{zz}(p,p_n)}{\partial p_y}n_y
\]
\[
t_x = t_{xx}, t_y = t_{yy}, n_x = n_{xx}, n_y = n_{yy}, \xi, \xi = x, y \text{ when } p \in \Omega_m.
\]

The coefficients α_n and β_n are calculated from a system of $(2N_m + 2N + \ldots + 2N_m) \times (2N_m + 2N + \ldots + 2N_m)$ algebraic equations, obtained by collocating the boundary conditions:
\[
Ax = b
\]

Figure 2: Distributed source on a disk $A(p_o)$
Slika 2: Porazdeljeni izviri na disku $A(p_o)$
where A is composed of $\bar{U}_{ij}(p,p_n)$ and $\bar{T}_{ij}(p,p_n)$, x is composed of α_l and β_n, and b is composed of u_c, ξ_i and τ. The explicit form of the elements of the algebraic equation system (13) can be found in.\(^\text{11}\)

The diagonal terms $T_{ij}(p,p)$, $\xi_i = x, y, l = 1, \ldots, N_l + \ldots + N_M$, in Eq. (13) are determined indirectly for the collocation points on Γ^c. For this purpose, the method proposed in\(^\text{7}\) for potential problems is applied to determine the diagonal coefficients of Eq. (13). In the approach, we first assume two simple solutions. The first simple solution is $\bar{u}_n(p) = 0, \bar{u}_n(p) = p_x + c$ everywhere. We solve them for the corresponding $\alpha_n^{(1)}, \beta_n^{(1)}$ using only the displacement boundary condition. From these two solutions, we can also know:

$$\frac{\partial u_n^{(1)}}{\partial p_x} = 1, \frac{\partial u_n^{(1)}}{\partial p_y} = \frac{\partial u_n^{(1)}}{\partial p_y} = 0$$

$$\frac{\partial u_n^{(2)}}{\partial p_x} = 0, \frac{\partial u_n^{(2)}}{\partial p_y} = \frac{\partial u_n^{(2)}}{\partial p_y} = 1$$

By substituting $\alpha_n^{(1)}, \beta_n^{(1)}$ and $\alpha_n^{(2)}, \beta_n^{(2)}$ in Eq. (9), we can obtain the diagonal terms $\bar{T}_{ij}(p,p)$, $\xi_i = x, y, l = 1, \ldots, N_l + \ldots + N_M$. The constant c should be selected in such a way that all the points in the upper cases do not move the same distance. So that the denominators in the upper derivations are not zero.

By knowing all the elements A_l and b_l of the system (13), we can determine all the values of α_l and β_l. Subsequently, we can calculate the displacement for all the domain points using Eq. (9).

4 NUMERICAL EXAMPLES

![Figure 3: The deformation calculated with MFS and NMFS for a one-domain case with $E = 1N/m^2$, $\nu = 0.3$ and $N = 120$ (•: collocation points, ◦: source points, ×: MFS solution, Δ: NMFS solution).](image)

![Figure 4: The deformation calculated with MFS and NMFS for a four-domain case $E_1 = E_2 = \ldots = E_4 = 1N/m^2$, $\nu_1 = \nu_2 = \ldots = \nu_4 = 0.3$ and $N = 240$ (•: collocation points, ◦: source points, ×: MFS solution, Δ: NMFS solution).](image)

We consider a square with side $a = 3m$ centred around $p_x = 0m, p_y = 0m$ for testing the performance of the method. We distinguish three sub-examples. In the first one, the whole square is occupied by one material, with the material properties $E = 1N/m^2$, $\nu = 0.3$, in the second one, the square is split into four parts with the same material properties as in the first example $E_1 = E_2 = \ldots = E_4 = 1N/m^2$, $\nu_1 = \nu_2 = \ldots = \nu_4 = 0.3$, and in the third one, the square is split into nine parts with the same material properties as in the second example $E_1 = E_2 = \ldots = E_4 = 1N/m^2$, $\nu_1 = \nu_2 = \ldots = \nu_4 = 0.3$, and in the third one, the square is split into nine parts with the same material properties as in the second example...
material properties as in the first example $E_1 = E_2 = \ldots = E_IX = 1 \text{N/m}^2$, $v_1 = v_2 = \ldots = v_IX = 0.3$. We considered the solution of the Navier equations in this square subject to the boundary conditions $\bar{u}_x = 0 \text{m}$, $\bar{u}_y = -0.1 \text{m}$ on the points of the north side with $p_x = 1.5 \text{m}$, $\bar{u}_x = 0 \text{m}$, $\bar{u}_y = 0 \text{m}$ on the south side with $p_x = -1.5 \text{m}$ and on the east $p_x = 1.5 \text{m}$ and west $p_x = -1.5 \text{m}$ sides $\bar{u}_x = 0 \text{N/m}^2$, $\bar{u}_y = 0 \text{N/m}^2$ is set. A plot of the deformation, calculated with the defined three sub-examples is shown in Figures 3, 4 and 5, respectively. The following parameters were used $R = dI/5$, $R_l = dI/5$, ..., $R_{IX} = dI/5$, where d, a_m, $m = 1$, II, ..., IX are the smallest distances between two nodes on the boundary, R_m is the radius of the circle centred the point $p_k \in \Gamma_m$, $c_i = c_i = c_{i1} = c_{i2} = L = c_{IX} = c_{IX} = 4$. The distance of the fictitious boundary from the true boundary for the MFS is set to $R_{XY} = 5d$, $R_{XY} = 5d$, ..., $R_{IX} = 5d$. Figures 3, 4 and 5 show good agreement between the solution for a one-domain region and a solution recalculated with the four and nine regions in ideal mechanical solution for a one-domain region and a solution recalculated with only one solution in MFS. The main advantage of the method is that the discretisation is performed only on the boundary of the domain and no polygonisation is needed, like in the finite-element method. The NMFS method, presented in this paper, can be adapted or extended to handle many related problems, such as three-dimensional elasticity, anisotropic elasticity, and multi-body problems, which all represent directions for our further investigations. The advantage of not having to generate the artificial boundary is particularly welcome in these types of problems. The method will be used in the future for the calculation of multigrain deformation problems in steel and aluminium alloys, with realistic grain shapes, obtained from the microscope images. The developed method is believed to represent a most simple state-of-the-art way to numerically cope with these types of problems.

Acknowledgement

This paper forms a part of the project L2-3651 Simulation and Optimisation of Casting, Rolling and Heat Treatment Processes for Competitive Production of Topmost Steels, supported by the Slovenian Research Agency (ARRS) and Store Steel company. The Centre of Excellence for Biosensors, Instrumentation and Process Control (COBIK) is an operation financed by the European Union, European Regional Development Fund and the Republic of Slovenia.

6 REFERENCES

7. Y. S. Smyrulis, Mathematics of Computation, 78 (2009), 1399–1434
8. Y. J. Liu, Engineering Analysis with Boundary Elements, 34 (2010), 914–919
9. B. Šarler, Engineering Analysis with Boundary Elements, 33 (2009), 1374–1382