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The continuous demand for cost optimization in the manufacturing of thermoplastic polymer products leads to the design trend
of minimizing the number of assembly parts, which consequentially increases their geometrical complexity. This trend directly
influences the manufacturing process of injection-moulded thermoplastic polymer parts. Parts designed in accordance with this
design trend have many undercut-geometry features, which usually cannot be ejected from the mould without complex mould
kinematics. A typical case of undercut geometry is represented by an annular snap joint, which can be released from the mould
core by stripping it off. Stripping it off can be applied if the undercut geometry is deformed within the material’s elasticity limits
during ejection. When the stripping-off principle is used, an analysis of the stress field in the area of the product’s undercut
geometry should be carried out. Finite-element methods are commonly applied for determining the stress field. These methods
offer a single point solution that requires lots of engineering effort and has to be repeated for any geometry modification. This
study is focused on developing an artificial-neural-network response model that properly describes the relationships between the
input factors (geometrical features) and the corresponding responses (maximum stress) in an undercut area. To overcome the
necessity of carrying out numerical simulations for all the input-factor combinations the Taguchi design of experiment was used.
Both the analysis of variance preformed within the Taguchi design of experiment and the artificial neural network model vali-
dation confirmed that the most influential geometrical input factor is the draft angle. For the artificial-neural-network model
validation a virtual full-factorial design of experiment was used and the response surfaces were generated based on the obtained
experimental results. Although the model solution is developed for a specific undercut geometry, the presented paper offers a
generalized approach for assessing the stress field of the undercut-geometry features.
Keywords: thermoplastic polymers, injection moulding, finite-elements method, design of experiments, artificial neural net-
works

Stalna zahteva globalne ekonomije po optimizaciji stro{kov v proizvodnji izdelkov iz termoplasti~nih polimerov potiska v
ospredje zahtevo po zmanj{evanju {tevila monta`nih delov, kar posledi~no pomeni pove~anje njihove geometrijske kompleks-
nosti. Ta usmeritev neposredno vpliva tudi na proizvodni proces injekcijskega brizganja termoplasti~nih polimerov. Sestavni
deli, konstruirani v skladu s to usmeritvijo, imajo veliko geometrijskih podro~ij z negativnimi snemalnimi koti, zaradi katerih je
treba v orodjih uporabiti mehanizme s kompleksno kinematiko. Eden osnovnih primerov je cilindri~na zasko~na geometrija, ki
jo je mogo~e izmetati s prisilnim snemanjem. Princip prisilnega snemanja geometrije izdelka je mogo~e uporabiti kadar se
geometrija z negativnimi snemalnimi koti med izmetavanjem poda v okviru meja elasti~ne deformacije. Pri apliciranju
prisilnega snemanja je priporo~ljivo izvesti analizo napetosti, za kar se navadno uporablja metoda kon~nih elementov. Ta
metoda je ~asovno potratna, zahteva veliko in`enirskih in procesorskih virov ter jo je treba ponoviti ob kakr{ni koli spremembi
vhodnih podatkov. Predstavljena raziskava obravnava razvoj modela z uporabo umetnih nevronskih mre`, ki ustrezno obravnava
odnose med vhodnimi spremenljivkami (geometrijske karakteristike) in pripadajo~im odzivom (maksimalno napetostjo) v
obmo~ju geometrije z negativnimi snemalnimi koti. Da bi se odpravila potreba po izvajanju obse`nega {tevila analiz z metodo
kon~nih elementov, je bilo izvedeno na~rtovanje eksperimenta po Taguchijevi metodi. Tako analiza variance rezultatov
eksperimenta, kot tudi validacija modela, podprtega z nevronsko mre`o, sta potrdili, da je najbolj vplivna geometrijska
spremenljivka snemalni kot izdelka. Za presojo vplivnosti posamezne vhodne spremenljivke modela, podprtega z nevronsko
mre`o, je bilo izvedeno virtualno na~rtovanje eksperimenta, pridobljeni rezultati pa so bili podlaga za oblikovanje odzivnih
povr{in. Predstavljena raziskava ponuja generaliziran na~in za hitro oceno napetostnega polja v polimernih izdelkih, ki je bil
preverjen pri zna~ilnem primeru zasko~ne geometrije.
Klju~ne besede: termoplasti~ni polimeri, injekcijsko brizganje, metoda kon~nih elementov, na~rtovanje eksperimentov,
nevronske mre`e

1 INTRODUCTION

Undercuts can be defined as the geometrical features
on an injection-moulded part whose projection lines in
the direction of a mould-opening vector overlap the
geometry of the same part. Undercuts prevent the
moulded parts from being removed from the cavity in an
axial direction and are said to create a die-lock situation.1

These require the use of special mould features such as
side cores, split cavities, collapsible cores, unscrewing
devices, or stripper plates.2 Some undercuts, like the
snap rings on many container caps, can be stripped off
the core forming it.2 This means pushing the thermopla-
stic material out of the grooves that prevent the product
from easily pulling off the core. This method is very
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common but depends on the shape of the grooves and the
types of thermoplastic material.3 The allowable defor-
mation should not be exceeded during the ejection of the
part from the mould.4 Only somewhat elastic thermo-
plastic polymer materials can be stripped, typically
polyethylene (PE) and polypropylene (PP). Occasionally,
even thermoplastic materials with a lower elasticity such
as polystyrene (PS) can be stripped, if the amount of
deformation during stripping is within the elastic limit at
the temperature given at the moment of ejection.3

In this study the special case of an undercut geo-
metry, called an annular snap joint, was observed
(Figure 1). The following geometrical features were
observed as the input factors: draft angle (�), inner radius
(R), and thickness (t). The thermoplastic polymer mate-
rial used for the observed part is polyester-based grade
BASF Elastollan® C85A.

Artificial neural networks (ANNs) are recognized as
universal function approximators and can be efficiently
used to model high-dimensional and nonlinear relations.5

In order to generate and validate the ANN model the
research was carried out with the following steps:
1. Definition of the observed input factors
2. Taguchi Design of Experiment (DOE) preparation
3. Numerical simulations of stress field using finite-ele-

ment methods (FEMs) and retrieval of the maximum
stress

4. Experiment result analysis
5. ANN modelling and response validation
6. Deploying virtual full-factorial DOE on ANN model

and response surface generation

2 EXPERIMENT PREPARATION

The experiment preparation includes the input vari-
able definition, the Taguchi DOE, and the CAD model
generation.

The correct approach to dealing with several factors
is to conduct a factorial experiment.6 For three observed

factors (�, R, and t) four levels were defined, as shown in
Table 1. To cover all the variable combinations on all
levels 43 = 64 runs would be carried out. This represents
a full-factorial DOE. Since the FEM requires extended
engineering resources, a reduced optimized number of
runs was achieved by using the L16 Taguchi Orthogonal
Array DOE, as shown in Table 2.

Table 1: DOE controllable factor levels
Tabela 1: Nivoji spremenljivk za na~rtovani eksperiment

Controllable factors Level 1
(Low)

Level 2
(Middle)

Level 3
(High)

Level 4
(High+)

Draft Angle �/° 30 40 50 60
Inner radius R/mm 10 13 16 19
Thickness t/mm 2.5 3 3.5 4

The product CAD data was generated with CATIA
V5 R19 software.

3 FEM NUMERICAL SIMULATIONS AND
RETRIEVAL OF THE MAXIMUM STRESS

This study deals with several nonlinearities: contact,
material, and geometrical.7 All the mentioned nonlineari-
ties can be captured with the finite-element method
(FEM). It was considered that the ejection of a moulded
part is performed at 100 °C, and that there is a good
lubrication between the ejected part and the core pin,
which reduces the coefficient of friction to � 0. Due to
the high temperature the strain rate has a very small
influence on the stress-strain behaviour of the BASF Ela-
stollan® C85A. This property was determined with extra
experimental testing using a high-speed testing device.
The Marlow constitutive model8 was used to model the
stress-strain behaviour during ejection. The annular snap
joint in Figure 1 presents a cylindrical geometry, and so

B. FLORJANI^ et al.: ASSESSING THE STRESS FIELDS IN AN INJECTION-MOULDED UNDERCUT GEOMETRY ...

126 Materiali in tehnologije / Materials and technology 48 (2014) 1, 125–130

Figure 1: Annular snap joint
Slika 1: Cilindri~na zasko~na nerazstavljiva zveza

Table 2: Experiment results, L16 Taguchi DOE
Tabela 2: Rezultati eksperimenta, L16 Taguchijeva metoda

Run No.
Controllable factors FEM Response

Maximum Stress S/N-
value

�/° R/mm t/mm max/MPa
1 30 10 2.5 1.707 –4.645
2 30 13 3 1.722 –4.721
3 30 16 3.5 1.754 –4.881
4 30 19 4 1.718 –4.700
5 40 10 3 2.205 –6.868
6 40 13 2.5 1.908 –5.612
7 40 16 4 2.020 –6.107
8 40 19 3.5 1.770 –4.959
9 50 10 3.5 2.595 –8.283

10 50 13 4 2.408 –7.633
11 50 16 2.5 1.869 –5.432
12 50 19 3 1.895 –5.552
13 60 10 4 2.813 –8.983
14 60 13 3.5 2.528 –8.056
15 60 16 3 2.233 –6.978
16 60 19 2.5 1.880 –5.483



an axisymmetric numerical model can be used. The
stripper plate and the core pin (Figure 1) were modelled
as analytical rigid parts because they have a much higher
stiffness than the ejected part, which was discretized
with 4-noded, bilinear, axisymmetric quadrilateral ele-
ments using hourglass control and reduced integration.
The calculation was made using an Explicit solver.8 The
core pin was fixed and the stripper plate was controlled
with a constant velocity of 20 mm/s.

Table 2 presents the results for the maximum von
Mises stress that occurs in the undercut geometry during
ejection.

The results in Table 2 show that the highest von
Misses stress occurs for Run No.13, where � = 60°, R =
10 mm and t = 4 mm.

The results in Figure 2 show that the highest stress in
the ejected part occurs below the surface in the region of
contact between the fillets of the ejected part and the
core pin.

4 ANALYSIS OF THE EXPERIMENTAL RESULT

Design of experiments is an effective approach to
optimizing the throughput in various manufacturing-
related processes.9 In this study the Taguchi DOE was
used (Table 2). Three geometry variables, �, R, and t,
were studied at four levels. MINITAB 16 software was
used to design the simulations and to model and analyse
the results. The summary statistics S/N signal-to-noise
ratios were calculated based on the following equation:

S/Ni = –10 lg i
2 (1)

where i
2 is the square stress value of the i-th dataset.

The dataset combinations that were numerically anal-
ysed with the computed stress values and S/N statistics
are shown in Table 2.

The effect of the factor is defined as the response
change from the overall mean due to a change in the

level of that factor. The main effect plot was used to
analyse the importance of the factors in Figure 3.

The important goal in the matrix experiment is to find
the optimum level for each factor. The Taguchi metho-
dology defines three types of quality characteristics,
which are the-smaller-the-better, the-larger-the-better,
and the-nominal-the-best. The design of the injection-
moulding geometry should take steps towards reducing
the stress values inside the moulding during ejection.
Therefore, a smaller-the-better quality characteristic is
implemented in this study, which means that we should
maximize the S/N values because of a decreasing func-
tion – log. It was determined in Figure 3 by observing
the optimum level for each factor at the highest value of
S/N. Thus, the optimum draft angle is � (30°), the
optimal inner radius is R (19 mm), and the optimal thick-
ness is t (2.5) mm. The predicted best setting does not
correspond to one of the runs in the matrix, which is
normal. The average S/N for each level of the three
factors is listed in Table 3. These averages, known as
main effects, are also shown in Figure 3.

Table 3: Average S/N ratio by factor levels with an overall mean of
–6.18
Tabela 3: Povpre~ni S/N za posamezni nivo spremenljivke (skupno
povpre~je –6,18)

Controllable factors
Average S/N ratio

Level 1 Level 2 Level 3 Level 4
Draft Angle �/° –4.74 –5.89 –6.73 –7.37
Inner radius R/mm –7.19 –6.51 –5.85 –5.17
Thickness t/mm –5.29 –6.03 –6.54 -6.86

4.1 Analysis of variance

The purpose of ANOVA is to determine the relative
importance of the geometry factors on the process
output. Table 4 shows the ANOVA results. The sum of
squares due to the factors �, R, t are, respectively, 15.33,
9.03, and 5.42. Thus, the factor � represents a major
portion of the total variation of the S/N. In other words,
factor � is responsible for (15.33/30.64) × 100 = 50.03 %
of the S/N variation. This result is followed by two other
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Figure 3: Main separate effects plot for each factor S/N values
Slika 3: Diagram vplivnosti S/N-vrednosti posameznega faktorja

Figure 2: Stress field (� = 40 mm, R = 10 mm, t = 3 mm)
Slika 2: Napetostno polje (� = 40 mm, R = 10 mm, t = 3 mm)



factors, factor R with next largest portion, i.e., 29.47 %,
and factor t with 17.69 % of the variation in S/N. The
smallest portion of the variation goes to the error term
that explains 2.84 % of the variation. The ANOVA also
indicates that all three factors are highly significant since
their F values (35.17, 20.72, and 12.43) are high com-
pared to F0.05,3,15 = 3.29.

Table 4: Analysis of Variance
Tabela 4: Analiza variance

Source DF SS MS F
Draft Angle �/° 3 15.33 5.11 35.17
Inner radius R/mm 3 9.03 3.01 20.72
Thickness t/mm 3 5.42 1.81 12.43
Residual Error 6 0.87 0.15
Total 15 30.64

NOTES: DF… Degrees of freedom, SS… Sum of squares, MS…
Mean squares, F… statistic

4.2 Prediction of S/N under optimal conditions

The principal goal of conducting Robust Design
experiments is to determine the optimum level of each
factor. In this study the optimum condition is � (30°), R
(19 mm), and t (2.5) mm. The additive model10 to predict
the value of the S/N ratio under the optimum conditions
was used:
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where m is the overall mean of the S/N for the experi-
mental region, and �i, Rj, tk are deviations from m
caused by the factors �, R, and t, respectively. The term
e indicates the error. Since the sum of squares due to the
error is small, the corresponding contribution was re-
moved in the prediction of the S/N under optimum con-
ditions. The values in Eq. (2) are taken from Table 3.

Using Eq. (1) the stress value under the optimum
conditions was predicted as:

 = = =
−

10 10 138710 0 284

S N/

. .
opt

MPa (3)

4.3 Confirmation simulation

After the calculation of the optimal conditions a
numerical simulation with optimum parameter settings
was performed. The simulation output with the predic-
tion was compared. The simulation output under � (30°),
R (19 mm), and t (2.5 mm) yields 1.399 MPa, which is
very close to the predicted stress of 1.387 MPa, as
calculated in Eq. (3). Having simulated and predicted
values close to each other, it can be concluded that the
additive model is adequate for describing the dependence
of the S/N ratio on the various parameters.

5 ANN MODEL FOR ASSESSING THE
MAXIMUM STRESS

ANNs provide non-parametric, data-driven, self-
adaptive approaches to information processing.11 To
model a multivariable relation between the selected
variable factors and the corresponding maximum stress a
multi-layer, feed-forward network was used. The multi-
layer feed-forward neural networks are usually applied
for function-fitting problems. For ANN model genera-
tion a MATLAB 7.11.0.584 (R20130b) software envi-
ronment was used. In order to avoid over fitting a simple,
two-layer, feed-forward network was created using the
Neural Network Toolbox™. Feed-forward networks
often have one or more hidden layers of sigmoid neurons
followed by an output layer of linear neurons. Multiple
layers of neurons with nonlinear transfer functions allow
the network to learn nonlinear relationships between the
input and output vectors. The linear output layer is most
often used for function fitting (or nonlinear regression)
problems.12 There are several training algorithms that can
be used, from among which the Levenberg-Marquard
back-propagation algorithm was adopted. It is a method
that is normally used for small and medium-sized feed-
forward neural networks.12

As a performance function for feed-forward networks
a mean square error (MSE) was used, which defines the
average squared difference between the network outputs
and the target responses.

Through an iteration process of testing several feed-
forward ANN architectures an optimised solution was
chosen, as shown in Figure 4. It has 3 units in the input
layer, 3 neurons with a sigmoid activation function in the
hidden layer, and a single output neuron with a linear
activation function.
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Figure 4: ANN architecture generated with MATLAB
Slika 4: Arhitektura nevronske mre`e, generirane v programskem okolju MATLAB



The ANN model results are shown in Table 5. The
training set returned a root mean square error (RMSE) of
0.017 MPa and a mean absolute percentage error
(MAPE) of 0.07 %. Both the validation set and the test
set show an acceptable root mean square error (RMSE)
of 0.052 MPa and 0.082 MPa, and also low mean abso-
lute percentage errors (MAPE) of 2.06 % and 0.67 %.
These results show an acceptable level of ANN model
performance. Confirmation of this conclusion is also a
low scatter between the target value and the correspond-
ing ANN response, shown in Figure 5. All the datasets
show high correlation coefficients.

Table 5: ANN model results

Tabela 5: Odziva modela

Training
set

Valida-
tion set Test set All

RMSE/MPa 0.017 0.052 0.082 0.037
MAPE/% 0.07 2.06 0.67 1.14

Correlation coefficient 0.99829 1 1 0.99442
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In the above equations ti and yi denote the target and
the ANN response and N denotes the number of input
samples.

Because of the small sample set a further ANN
model verification was carried out on an additional three
test samples, which were not included in neural network
generation. The test sample data is shown in Table 6.
The ANN model responses were observed and compared
with the FEM responses. The calculated relative percen-
tage error (RPE) confirms that the ANN responses are
within an acceptable accuracy.

Table 6: ANN model verification
Tabela 6: Ovrednotenje odziva modela

Verifica-
tion

Run No.

Controllable factors Response
max/MPa RPE/%

�/° R/mm t/mm FEM ANN
1 35 17 3.2 1.798 1.731 –3.75
2 42 14 3.7 2.229 2.186 –1.91
3 53 12 2.8 2.290 2.333 –1.87

RMSE = 0.052 MPa MAPE = 1.62 %

6 VIRTUAL DOE AND RESPONSE SURFACE
GENERATION

To identify the significance of the input factors (�, R
and t) and their interactions (�*R, �*t and R*t) in the
ANN model a full-factorial DOE (43 = 64 runs) was
carried out, with the levels defined in Table 1. A full-
factorial design was used, because the virtual environ-
ment in this case does not represent resource limitations,
and there was no necessity to use any of the fractional
factorial design at disposal. The analysis of variance
shown in Table 7 indicates that all the input factors can
be considered significant, because their P-value is below
a threshold of 0.05. On the other hand, their interactions
cannot be considered as significant except for �*R.

To analyse the importance of the input factors in the
ANN model, the main effect plot was generated as
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Figure 5: Scatter plot of ANN outputs vs. target outputs
Slika 5: Diagram raztrosa odzivov modela, podprtega z nevronsko
mre`o

Table 7: Analysis of Variance for max/MPa
Tabela 7: Analiza variance za napetost max/MPa

Source DF Seq SS Adj SS Adj MS F P
Draft Angle �/° 3 3.46610 3.46610 1.15537 620.96 0.000

Inner radius R/mm 3 2.15679 2.15679 0.71893 386.39 0.000
Thickness t/mm 3 1.38575 1.38575 0.46192 248.26 0.000

� * R 9 0.07428 0.07428 0.00825 4.44 0.001
� * t 9 0.00542 0.00542 0.00060 0.32 0.960
R * t 9 0.00304 0.00304 0.00034 0.18 0.994

Residual Error 27 0.05024 0.05024 0.00186
Total 63 7.14161

S = 0.0431350 R-Sq = 99.30 % R-Sq(adj) = 98.36 %

NOTES: DF… Degrees of freedom, Seq SS… Sequential sums of squares, Adj SS… Adjusted sums of squares, Adj MS… Adjusted mean
squares, F… statistic, P… Probability, S… Estimate of the variance, R-Sq… Coefficient of determination, R-Sq(adj)… Modified R-Sq that has
been adjusted for the number of terms in the model



shown in Figure 6. From the plot it can be concluded
that the most significant input factor is the draft angle
(�), followed by the inner radius (R) and the thickness
(t). While the draft angle (�) and the thickness (t) have
positive gradients, the inner radius (R) shows that with
increasing value the maximum stress decreases.

To properly visualize the effect of the two most
influential input factors’ responses, surface modelling
was applied to the developed ANN model. Figure 7
shows the predicted maximum stress at a fixed thickness
of 3.25 mm. As expected, the surface response confirms
the already observed gradients in the main effect plot as
shown in Figure 6.

7 DISCUSSION AND CONCLUSIONS

This paper proposes an implementation and eva-
luation of an ANN-based model for assessing the stress
field in an injection-moulded undercut geometry during
ejection at an acceptable accuracy level. The stress field

in the injection-moulded undercut geometry was deter-
mined with a finite-element model, where besides
contact also material and geometrical nonlinearities were
considered. Both the analyses of variance preformed on
the Taguchi DOE and ANN model validation, carried out
through separate statistical analyses, confirmed that all
the observed input factors draft angle (�), inner radius
(R), and thickness (t) can be considered statistically sig-
nificant. While an increased draft angle (�) or thickness
(t) means a higher maximum stress, an increased inner
radius (R) reduces it.

The following benefits can be expected by applying
the proposed approach:

• Structured methodology for generating and evaluat-
ing an ANN-based stress-assessment model;

• Reduction of engineering efforts for maximum stress
assessment when high geometrical variability is con-
sidered;

• Better understanding of input factors influence on the
maximum stress.
The proposed solution for generating and evaluating

an ANN-based stress-assessment model can be used as a
generalized solution approach and expanded to similar
cases.
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Figure 7: Response-surface plot for max/MPa
Slika 7: Diagram odzivne povr{ine za napetost max/MPa

Figure 6: Main effects plot for max/MPa
Slika 6: Diagram vplivnosti faktorjev na napetost max/MPa


