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In this study, hexagonal lattice parameters (a and c) and unit-cell volumes of non-stoichiometric apatites of M10(TO4)6X2 are
predicted from their ionic radii with artificial neural networks. A multilayer-perceptron network is used for training. The results
indicate that the Bayesian regularization method with four neurons in the hidden layer with a tansig activation function and one
neuron in the output layer with a purelin function gives the best results. It is found that the errors for the predicted data of the
lattice parameters of a and c are less than 1 % and 2 %, respectively. On the other hand, about 3 % errors were encountered for
both lattice parameters of the non-stoichiometric apatites with exact formulas in the presence of the T-site ions that are not used
for training the artificial neural network.
Keywords: hydroxyapatite, crystal structure, artificial neural networks, multilayer-perceptron network

V tej {tudiji so z uporabo umetnih nevronskih mre` napovedani heksagonalni mre`ni parametri (a in c) in prostornina osnovne
celice nestehiometri~nega apatita M10(TO4)6X2 iz njihovih ionskih premerov. Za u~enje je bila uporabljena ve~plastna
perceptronska mre`a. Rezultati ka`ejo, da najbolj{e rezultate daje Bayesianova ureditvena metoda s {tirimi nevroni v skriti plasti
z aktivacijsko funkcijo štansig’ in en nevron v zunanji plasti s špurelin’-funkcijo. Ugotovljeno je, da je napaka pri napovedanih
mre`nih parametrih a in c manj kot 1 % oziroma manj kot 2 %. Po drugi plati pa se sre~amo z napako 3 % pri obeh parametrih
mre`e nestehiometri~nega apatita z natan~nimi formulami pri prisotnosti ionov na T-mestih, ki niso bili uporabljeni pri
usposabljanju umetne nevronske mre`e.
Klju~ne besede: hidroksiapatit, struktura kristala, umetna nevronska mre`a, ve~plastna perceptronska mre`a

1 INTRODUCTION

Apatite is a mineral group which normally crystalli-
zes in the space group P63/m. Apatite is the main source
of the phosphorus required by plants. Apatite-group
minerals have a general formula IXM14

VIIM26(IVTO4)6X2

(Z = 1), where the left superscripts indicate the ideal
coordination numbers and are isostructural with apatite.
Numerous mono-, di- and trivalent cation substitutes are
found in the M sites and numerous hexa-, penta- and
quadravalent polyanions can occupy the TO4 site. The X
site is usually occupied by monovalent anions, however,
O2– and H2O can also reside there.1 Apatites can be
substituted by various elements, but even small amounts
of substitutions can make a noticeable effect on the
mechanical, thermal and optical properties.2 Recently,
apatite minerals have become very important in the fields
of biomaterials, sensors, detoxification of wastes and
immobilization of radioactive wastes.2–4

Bone is a natural composite material of a mass
fraction 69–80 % inorganic phase (carbonated hydroxyl-
apatite), 17–20 % collagen (organic component) and
trace amounts of water and proteins.5 Basically, synthetic
hydroxylapatite (Ca10(PO4)6(OH)2) belongs to the large

chemical family of calcium phosphates (CaP). CaPs are
biocompatible, non-toxic, resorbable, non-inflammatory,
having an excellent osteoconductive ability and bioactive
property. Therefore, it is used as a bone and dental
implant and for the coatings on implants, due to its
similarity to the inorganic part of the bone.6 Stability and
ion-exchange capabilities mostly depend on the lattice
properties. Moreover, the residual stresses in biological
apatite coatings cause serious problems. These stresses
may result in the wear debris and delamination that can
be lethal for the patients because of the toxic effects and
biomechanical failure. One of the main reasons of these
drawbacks is a structural mismatch caused by the
lattice-parameter differences between the substrate and
the coating.7

It is not easy to prepare single crystals of apatites for
X-ray diffraction applications and lattice-parameter
determination with other diffraction techniques as
electron and neutron diffractions are time consuming and
not within the reach of many researchers. Moreover, vast
amounts of ion-substitution possibilities exist. Neural
networks can generate lattice parameters with a variety
of apatite structures using limited numbers of experimen-
tal crystal study results for training the network, so that
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the experimental work can be eliminated. A neural
network is set to solve a relation between the inputs and
outputs, which are ionic radii and lattice parameters,
respectively. Hence, it is very important to construct a
suitable dataset for training the neural network and find
the optimum network types and parameters that can
assist in generating crystal-structure entities like the
lattice parameters of apatites.8,9

An artificial neural network (ANN) has a wide range
of applications where a large amount of data is available
but no reliable physical model is present.10 The ANN is
extensively used to model complex relationships bet-
ween inputs and outputs. In the program, the training is
first performed using the existing experimental data. By
using this method, many properties like stress, strain,
hardness, toughness, residual stress11–14 and anything else
that has a complex non-linear relationship with the
known input variables can be determined without exten-
sive theoretical and experimental studies. For example,
the amounts of added chemicals are the input parameters
that involve vast possibilities; however, the outputs that
depend on the input parameters are normally determined
experimentally. Generating large numbers of experimen-
tal data may be avoided by training neural networks with
small numbers of experimental data if the input variables
and the values that affect the searched properties, the
outputs of the neural network, are known. Alloy design
is particularly efficient with this method.15

Pattern recognition and prediction of the lattice
parameters of apatites with artificial neural networks
were previously studied.9 Hexagonal lattice parameters
of stoichiometric apatites were predicted using artificial
neural networks.16 However, there is not enough detail
about the learning methods used for training the network
and applicability of the method to non-stoichiometric
apatites. The term šnon-stoichiometric’ is used to state
that M/TO4, M/X or TO4 /X ratios are different from the
general formula of M10(TO4)6X2. In addition, a unit-cell-
volume calculation of apatites may amplify the errors
coming from the lattice-parameter predictions. The
errors between the calculated and predicted unit-cell
volumes of apatites were calculated. In this study,
non-stoichiometric hexagonal unit-cell lattice parameters
and volumes of apatites (M10(TO4)6X2), constituted by
M: Ca2+, Cd2+, Pb2+, Sr2+, Zn2+, La3+, Y3+; T: As+5, Cr+5,
P5+, V5+, Si+4; and X: F–, Cl–, OH–, Br–1, were predicted
from their elemental ionic radii using an ANN. Each ion
site accepted up to three substitutions and a wide variety
of coupled substitutions were investigated. In addition,
mathematical formulas were derived for the calculation
of the lattice parameters using average ionic radii as
independent variables.

2 METHODS

In an ANN, the learning methods compare the pre-
dicted outputs with the actual results.17 Typically 60–80
% of the data is used for training the network, while the

rest is used for testing and validating the data. At the end
of the training process, the test data is used to check the
ability of the network to predict new data.18 A multi-
layer-perceptron (MLP) model that maps the sets of
input data onto a set of appropriate output with super-
vised learning and batch training was used because of its
high non-linear regression performance.19 A single
hidden layer with different numbers of processing units
and various learning methods were experimented to
achieve the highest network performance. Sigmoid
transfer functions for the hidden layer and linear transfer
function for the output layer were used.

Some of the frequent algorithms use a first-order
derivative while others use a second-order derivative of
the error functions to determine the delta value which is
used to adjust the weights of the network.20 In this study,
backpropagation algorithms were used. The experimen-
ted backpropagation methods in this study were resilient
backpropagation (RP), gradient descent with momentum
and adaptive learning rate backpropagation (GDX),
levenberg-marquardt backpropagation (LM) and scaled
conjugate gradient backpropagation (SCG). In addition
to these methods, bayesian regularization (BR), which is
a generalization method based on LM, was used.

The backpropagation method is useful for finding a
network’s weight gradient ∇�( )w easily.16,21 The details
regarding this method were given in a previous study.16

The performance function of most of the networks is
MSE, but the generalization can be improved by modi-
fying the performance function with the mean square of
weights and biases. By using this new performance
function, the weights and biases were minimized, so the
network performance increased.16,19 The performance
ratio is hard to optimize. To do this, the BR method can
be used. This method reveals the network parameters
(weights and biases) that are being effectively used. This
method is especially useful when the inputs and targets
fall in the range of [–1,1] or are scaled to fit this range.19

An MLP neural network was used for the prediction
of hexagonal lattice parameters of apatites from their
average ionic radii at the individual sites of M, T, and X.
The average ionic radii were calculated by separately
giving weight to each ion at sites M, T, and X. The
weights given are the mole numbers corresponding to
each ion of the apatite formula. Then, the ionic radius of
each ion was multiplied by its weight and the values
were added to each site. Finally, the value for each site
was divided by the corresponding total weight and the
average ionic radius for each site was calculated.

Lattice parameters for the training dataset were
retrieved from the Joint Committee on Powder Diffrac-
tion Standards (JCPDS) database and literature22,23 with
the addition of two extra databases24,25 and the ionic radii
were found from a handbook.26 The constructed dataset
was used for training the network with a proper learning
method, neuron number in the hidden layer and activa-
tion functions. After training the network, the lattice
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parameters of non-stoichiometric apatites were predicted
by constructing a test dataset. The outputs of the test
dataset were not introduced to the software, so that the
prediction accuracy could be verified by comparing the
neural networks’ lattice-parameter predictions with the
experimental data. The formulas and lattice parameters
of the apatites that were used for testing, were retrieved
from the literature.27–32 In addition, the volumes of the
apatites in the test dataset were calculated using the
following equation:33

V = 2.589 × a2 × c (1)

where a and c are the lattice parameters of the hexago-
nal unit cell.

3 RESULTS AND DISCUSSION

After all the data were collected, several network
parameters were identified such as the type of the
network, the number of hidden layers, learning methods
and normalization functions. The best parameters found
for each learning method are given in Table 1. The
number of neurons in the hidden layer varied between
four and seven with the tangent sigmoid function in the
hidden layer and pure linear function in the output layer.

The previous works showed that the lattice para-
meters of apatites depend strongly on the average ionic
radii of the M, T and X sites,9 so to calculate the average
ionic radius of each site, the weights were given to the
M, T and X sites, with each site accepting up to three
ions.The datasets prepared for training the network
showed that the data should be kept as small as possible
to prevent large deviations of the results and overfitting.
After some trial and error, a refined dataset was prepared
for the neural-network application as seen in Table 2.

In this study, the Matlab Neural Network Toolbox,
version 4, was used for training and testing the network.
After experimenting with different learning types and
neuron numbers for the MLP network, it was seen that
all the learning types, except for the BR and the GDX,
produced correlation coefficients higher than 0.99. How-
ever, their prediction results were not equally successful.
The LM, SCG, and BR methods produced satisfactory
results, but only the BR method was capable of giving
both high-correlation coefficients and most accurate

prediction results, so the BR was used as the primary
choice for training and testing throughout this study. The
network parameters were optimized in order to obtain
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Table 1: Training parameters for each learning method
Tabela 1: Parametri usposabljanja za vsako metodo u~enja

Learning
method

Number of
neurons in the
hidden layer

Activation
function used

for hidden
layer

Activation
function used

for output layer
Epoch Momentum

coefficient Learning rate Train goal

BR 4 tansig purelin 1000 – – –
GDX 7 tansig purelin 5000 0.8 0.05 1e-3
LM 4 tansig purelin 400 – – 15e-4
RP 6 tansig purelin 5000 – – 1e-3

SCG 7 tansig purelin 3000 – – 177e-5
1e-3 (for c)

Figure 2: Linear correlation of outputs and targets for lattice para-
meter c
Slika 2: Linearna odvisnost rezultatov in ciljev za mre`ni parameter c

Figure 1: Linear correlation of outputs and targets for lattice para-
meter a
Slika 1: Linearna odvisnost rezultatov in ciljev za mre`ni parameter a
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Table 2: Training dataset and percent errors for the outputs
Tabela 2: Podatki za usposabljanje in napaka rezultatov

Apatite formula Average
radius M

Average
radius T

Average
radius X

a/
(10–1 nm)

c/
(10–1 nm) a output c output Error (%)

(a)
Error (%)

(c)
1 Ca5 (PO4)3 OH 1 0.38 1.37 9.424 6.879 9.4037 6.8499 0.215 0.423
2 Ca5 (VO4)3 (OH) 1 0.54 1.37 9.818 6.981 9.7524 6.9889 0.668 0.113
3 Ca5 (CrO4)3 OH 1 0.55 1.37 9.683 7.01 9.7353 6.9945 0.540 0.221
4 Ca5 (PO4)3 F 1 0.38 1.33 9.367 6.884 9.3817 6.855 0.157 0.421
5 Ca5 (PO4)3 Cl 1 0.38 1.81 9.52 6.85 9.6457 6.7576 1.320 1.349
6 Ca5 (AsO4)3 Cl 1 0.46 1.81 10.076 6.807 10.057 6.8122 0.189 0.076
7 Ca5 (PO4)3 Br 1 0.38 1.96 9.761 6.739 9.7262 6.7111 0.357 0.414
8 Cd5 (PO4)3 OH 0.95 0.38 1.37 9.335 6.664 9.3293 6.7003 0.061 0.545
9 Cd5 (PO4)3 Cl 0.95 0.38 1.81 9.625 6.504 9.6019 6.6 0.240 1.476

10 Sr5 (PO4)3 Cl 1.18 0.38 1.81 9.859 7.206 9.91 7.2671 0.517 0.848
11 Sr5 (CrO4)3 Cl 1.18 0.55 1.81 10.125 7.328 10.144 7.3722 0.188 0.603
12 Sr5 (PO4)3 Br 1.18 0.38 1.96 9.9641 7.207 9.9553 7.2315 0.088 0.340
13 Sr5 (PO4)3 OH 1.18 0.38 1.37 9.745 7.265 9.7731 7.3304 0.288 0.900
14 Sr5 (PO4)3 F 1.18 0.38 1.33 9.7174 7.2851 9.7597 7.3331 0.435 0.659
15 Pb5 (PO4)3 Cl 1.19 0.38 1.81 9.993 7.334 9.9297 7.2928 0.633 0.562
16 Pb5 (AsO4)3 Cl 1.19 0.46 1.81 10.24 7.43 10.226 7.3553 0.137 1.005
17 Pb5 (PO4)3 OH 1.19 0.38 1.37 9.877 7.427 9.7969 7.3545 0.811 0.976
18 Ba5 (PO4)3 OH 1.35 0.38 1.37 10.1904 7.721 10.175 7.707 0.151 0.181
19 Ba5 (PO4)3 F 1.35 0.38 1.33 10.153 7.733 10.159 7.7079 0.059 0.325
20 Ba5 (PO4)3 Cl 1.35 0.38 1.81 10.284 7.651 10.296 7.668 0.117 0.222
21 Ba5 (CrO4)3 OH 1.35 0.55 1.37 10.428 7.89 10.423 7.8724 0.048 0.223
22 Ca7.684 Sr2.316 (PO4)6 (OH)2 1.041688 0.38 1.37 9.4955 6.9718 9.4762 6.9692 0.203 0.037
23 Ca3.616 Sr6.384 (PO4)6 (OH)2 1.114912 0.38 1.37 9.6313 7.1246 9.6244 7.1669 0.072 0.594
24 Ca8.98 Sr1.02 (PO4)6 (OH)2 1.01836 0.38 1.37 9.4352 6.9087 9.4345 6.9031 0.007 0.081
25 Ca4.03 Cd0.97 (PO4)3 (OH) 0.9903 0.38 1.37 9.391 6.837 9.3881 6.8215 0.031 0.227
26 Ca3.98 Cd1.02 (PO4)3 F 0.9898 0.38 1.33 9.379 6.834 9.3647 6.8252 0.152 0.129
27 Ca3.475 Cd1.525 (PO4)3 F 0.98475 0.38 1.33 9.36 6.812 9.3566 6.8103 0.036 0.025
28 Ca5 (PO4)3 F0.41 Cl0.59 1 0.38 1.6132 9.5485 6.8237 9.5379 6.8072 0.111 0.242
29 Sr6 Ca4 (PO4)6 F2 1.108 0.38 1.33 9.63 7.22 9.5936 7.1525 0.378 0.935
30 Sr7.3 Ca2.7 (PO4)6 F2 1.1314 0.38 1.33 9.565 7.115 9.646 7.2127 0.847 1.373
31 Ca9.37 Sr0.63 (PO4)6 F2 1.01134 0.38 1.33 9.3902 6.9011 9.4012 6.8878 0.117 0.193
32 Ca5 (PO4)3 F0.17 Cl0.83 1 0.38 1.7284 9.6205 6.7761 9.6012 6.7798 0.201 0.055
33 Ca5 (AsO4)3 F 1 0.46 1.33 9.75 6.92 9.7251 6.9385 0.255 0.267
34 Ca5 (AsO4)3 OH 1 0.46 1.37 9.7 6.93 9.7503 6.931 0.519 0.014

Average percent errors of outputs 0.299 0.472

Table 3: Testing the dataset and percent errors for non-stoichiometric apatites
Tabela 3: Preizkus nabora podatkov in dele` napake pri nestehiometri~nih apatitih

Apatite formula
Average
radius

M

Average
radius T

Average
radius X

a/(10–1

nm)
c/(10–1

nm)
a

output
c

output

Error
(%)

for (a)

Error
(%)

for (c)
1 Ca9.75 Y0.25 (PO4)6 (OH)1.75 F0.25 0.9975 0.38 1.365 9.406 6.874 9.3969 6.8433 0.097 0.447
2 Ca9.5 Y0.5 (PO4)6 (OH)1.75 F0.25 0.995 0.38 1.365 9.408 6.877 9.3928 6.836 0.162 0.596
3 Ca9.25 Y0.75 (PO4)6 (OH)1.75 F0.25 0.9925 0.38 1.365 9.384 6.86 9.3888 6.8286 0.051 0.458
4 Ca9.75 Al0.25 (PO4)6 (OH)2 0.9885 0.38 1.37 9.4248 6.8812 9.3853 6.8162 0.419 0.945
5 Ca9.5 Al0.5 (PO4)6 (OH)2 0.977 0.38 1.37 9.4252 6.892 9.3677 6.782 0.610 1.596
6 Ca9.25 Al0.75 (PO4)6 (OH)2 0.9655 0.38 1.37 9.4218 6.8807 9.3509 6.7475 0.753 1.936
7 Ca9.5 Mg0.82 (PO4)6 (OH)2 0.9778 0.38 1.37 8.8133 6.8215 9.3688 6.7843 6.303 0.545
8 Ca9.5 Zn0.31 (PO4)6 (OH)2 0.9918 0.38 1.37 8.8972 6.8427 9.3905 6.8259 5.544 0.246
9 Ca9.5 La0.14 (PO4)6 (OH)2 1.0004 0.38 1.37 9.3135 6.8346 9.4044 6.8512 0.976 0.243

10 Ca9.5 Y0.23 (PO4)6 (OH)2 0.9976 0.38 1.37 8.9013 6.8548 9.3998 6.843 5.600 0.172
11 Ca9.5 In0.17 (PO4)6 (OH)2 0.9965 0.38 1.37 8.832 6.8101 9.398 6.8397 6.409 0.435
12 Ca9.5 Bi0.10 (PO4)6 (OH)2 1.0003 0.38 1.37 9.3442 6.8457 9.4042 6.8509 0.642 0.076
13 Ca9.7 Y0.2 (PO4)6 (OH)2 0.9980 0.38 1.37 9.4072 6.877 9.4004 6.844 0.072 0.480
14 Ca9.55 Y0.3 (PO4)6 (OH)2 0.9970 0.38 1.37 9.377 6.859 9.3987 6.841 0.231 0.262
15 Ca9.4 Y0.4 (PO4)6 (OH)2 0.9959 0.38 1.37 9.399 6.8734 9.3971 6.838 0.020 0.515



the best results with the BR method. Four processing
elements and the tansig activation function were used in
the hidden layer, while the purelin function was used in
the output layer.

A training dataset constructed from thirty-four data
entries was used for the prediction of non-stoichiometric
apatites. This dataset was trained using the BR method
with four neurons in the hidden layer. The tansig acti-
vation function was used in the hidden layer, while the

purelin function was used for the output layer. The
training dataset can be seen in Table 2. The coefficient
of determination, R2, was 0.981 for both lattice para-
meters as seen in Figures 1 and 2. In both figures the
vertical axis (A) represents the predicted value, while the
horizontal axis (T) represents the experimental value. In
addition, the average error percentage was 0.299 % and
0.472 % for the lattice parameters a and c, respectively.
The results indicate that that training was precise.
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16 Ca9.25 Y0.5 (PO4)6 (OH)2 0.9949 0.38 1.37 9.388 6.8662 9.3954 6.8349 0.079 0.456
17 Ca9.1 Y0.6 (PO4)6 (OH)2 0.9938 0.38 1.37 9.3496 6.8544 9.3937 6.8318 0.472 0.330
18 Ca8.55 Y0.7 (PO4)6 (OH)2 0.9924 0.38 1.37 9.3384 6.8448 9.3915 6.8278 0.569 0.248
19 Ca9.95(PO4)5.71(CO3)0.20 (OH)2 1 0.373 1.37 9.410 6.879 9.3535 6.8418 0.600 0.541
20 Ca9.46(PO4)5(CO3)1.00 (OH)1.78 1 0.343 1.37 9.394 6.894 9.1013 6.8047 3.116 1.295
21 Ca9.88(PO4)5.76(CO3)0.24F1.49(OH)0.51 1 0.3712 1.3402 9.382 6.891 9.3241 6.8432 0.617 0.694
22 Ca9.34(PO4)4.79(SO4)1.04(CO3)0.16(OH)1.78 1 0.3724 1.37 9.427 6.879 9.3491 6.8411 0.8264 0.5510
23 La8.65Sr1.35(SiO4)6O2.32 1.0503 0.40 1.40 9.7100 7.2254 9.6257 7.012 0.8682 2.9535
24 La8.65Sr1.35(GeO4)6O2.32 1.0503 0.53 1.40 9.9120 7.3236 9.8341 7.1225 0.7859 2.7459
25 La9Sr1(SiO4)5.5(AlO4)0.5O2.25 1.045 0.4117 1.40 9.7111 7.2290 9.6746 7.0095 0.3759 3.0364
26 La9.5(SiO4)5.5(AlO4)0.5O2 1.03 0.4117 1.40 9.7260 7.2002 9.6509 6.967 0.7722 3.2388
27 La9.33(SiO4)6O2 1.03 0.40 1.40 9.721 7.187 9.5919 6.9546 1.3281 3.2336
28 La9.33(SiO4)2(GeO4)4O2 1.03 0.4867 1.40 9.870 7.257 9.8336 7.0343 0.3688 3.0688
29 La9.33(SiO4)(GeO4)5O2 1.03 0.5083 1.40 9.902 7.276 9.8325 7.05 0.7019 3.1061
30 La9.33(GeO4)6O2 1.03 0.53 1.40 9.912 7.283 9.8124 7.064 1.0048 3.0070

Table 4: Percent errors for the calculated volumes
Tabela 4: Dele` napake pri izra~unanih prostorninah

Apatite formula V (unit cell) V (predicted) Error (%) volume
1 Ca9.75 Y0.25 (PO4)6 (OH)1.75 F0.25 1574.5 1564.5 0.639
2 Ca9.5 Y0.5 (PO4)6 (OH)1.75 F0.25 1575.9 1561.4 0.917
3 Ca9.25 Y0.75 (PO4)6 (OH)1.75 F0.25 1564.0 1558.4 0.356
4 Ca9.75 Al0.25 (PO4)6 (OH)2 1582.5 1554.4 1.773
5 Ca9.5 Al0.5 (PO4)6 (OH)2 1585.1 1540.8 2.793
6 Ca9.25 Al0.75 (PO4)6 (OH)2 1581.4 1527.5 3.406
7 Ca9.5 Mg0.82 (PO4)6 (OH)2 1371.8 1541.7 12.387
8 Ca9.5 Zn0.31 (PO4)6 (OH)2 1402.4 1558.4 11.123
9 Ca9.5 La0.14 (PO4)6 (OH)2 1534.9 1568.8 2.209

10 Ca9.5 Y0.23 (PO4)6 (OH)2 1406.2 1565.4 11.322
11 Ca9.5 In0.17 (PO4)6 (OH)2 1375.3 1564.0 13.720
12 Ca9.5 Bi0.10 (PO4)6 (OH)2 1547.5 1568.6 1.365
13 Ca9.7 Y0.2 (PO4)6 (OH)2 1575.6 1565.8 0.624
14 Ca9.55 Y0.3 (PO4)6 (OH)2 1561.4 1564.5 0.200
15 Ca9.4 Y0.4 (PO4)6 (OH)2 1572.1 1563.3 0.555
16 Ca9.25 Y0.5 (PO4)6 (OH)2 1566.7 1562.0 0.299
17 Ca9.1 Y0.6 (PO4)6 (OH)2 1551.3 1560.8 0.613
18 Ca8.55 Y0.7 (PO4)6 (OH)2 1545.4 1559.1 0.889
19 Ca9.95(PO4)5.71(CO3)0.20 (OH)2 1577.0 1549.7 1.731
20 Ca9.46(PO4)5(CO3)1.00 (OH)1.78 1575.1 1459.3 7.352
21 Ca9.88(PO4)5.76(CO3)0.24F1.49(OH)0.51 1570.4 1540.3 1.917
22 Ca9.34(PO4)4.79(SO4)1.04(CO3)0.16 (OH)1.78 1582.7 1548.1 2.188
23 La8.65Sr1.35(SiO4)6O2.32 1763.7 1682.1 4.63
24 La8.65Sr1.35(GeO4)6O2.32 1862.9 1783.3 4.269
25 La9Sr1(SiO4)5.5(AlO4)0.5O2.25 1765.0 1698.6 3.764
26 La9.5(SiO4)5.5(AlO4)0.5O2 1763.4 1680.0 4.727
27 La9.33(SiO4)6O2 1758.3 1656.6 5.787
28 La9.33(SiO4)2(GeO4)4O2 1830.3 1761.1 3.782
29 La9.33(SiO4)(GeO4)5O2 1847.0 1764.6 4.461
30 La9.33(GeO4)6O2 1852.5 1760.9 4.947



After the training of the model, a test dataset con-
structed from non-stoichiometric apatites was used to
predict their lattice parameters. The results of the
predictions can be seen in Table 3. The data in the first
six lines from Table 3 were not charge balanced and
approximate formulas for the apatites were used for the
prediction. The errors for the lattice parameters were less
than 1 % for a and 2 % for c. The data in lines seven to
eighteen from Table 327 contained an error of about 5 %
due to the measurement errors. The predicted lattice
parameters from the approximate formulas of these
apatites confirmed the error in the measurements. Four
of the generated results had an error of about 5 % for
lattice parameter a, but the rest of the predictions were
completed with an error of less than 1 % for both lattice
parameters.

The data after line nineteen from Table 3 included
virtually exact formulas taken from the literature. The
error margins given in these studies for certain apatite
formulas were not taken into account to get the results of
exact formulas. These apatites produced less accurate
results compared to the previous data in the same data-
set. The errors for lattice parameter a were generally less
than or around 1 % with a maximum of 3.116 %. How-
ever, the errors for lattice parameter c were varying
around 3 % which was significantly higher compared to
lattice parameter a. This was probably due to the com-
plex T sites associated with these apatites. Some of the
ions at the T site used for testing the network were not
included in the dataset of the training network due to the
insufficient experimental data and this resulted in
decreased prediction accuracy. Even under these circum-
stances, the errors for both lattice parameters did not get
significantly higher than 3 %.

The volume calculations for the apatites given in
Table 3 are given in Table 4. The apatite volumes were
calculated successfully except for four cases with an
error of about 5 % for lattice parameter a. In addition,
the results for the apatites after the nineteenth data entry
in Table 4 were varying significantly, so reliable volume
calculations for the apatites with the complex T sites
were not possible. These results show that if a training
dataset could be improved with the apatites involving
different arrangements at the T sites, even the lattice
parameters of highly non-stoichiometric apatites could
be predicted with high accuracies.

The predictions can be reproduced using equations 2
and 3 for lattice parameters a and c, respectively. These
equations were derived using the final weights and
activation functions of the network trained with the BR
method:

a F F F

F

= − ⋅ + ⋅ + ⋅ −
− ⋅ +

35488 2 0679 21481

46425 36454
1 2 3

4

. . .

. .
(2)

c F F F

F

= − ⋅ + ⋅ + ⋅ −
− ⋅ +

18272 18272 21636

19986 17878
1 2 3

4

. . .

. .
(3)

F
exp E1

1

2

1 2
=

+ − ⋅( )
(4)

The Fi values in these equations are the activation
functions of each neuron in the hidden layer, calculated
with equation 4. Ei is the weighted sum and its value for
the corresponding Fi can be calculated using the equa-
tions and final weights given in Tables 5 and 6 for lattice
parameters a and c, respectively. In Tables 5 and 6, C1,
C2, and C3 are the final weights of the network corres-
ponding to the average ionic radii RA, RB, and RC, respec-
tively. C4 is the bias for each processing element.

Table 5: Weights between the input and hidden layer for lattice para-
meter a

Tabela 5: Ute`i med vnosom in skritimi plastmi za mre`ni parameter a

i Ei = C1 × RM + C2 × RT + C3 × RX + C4

C1 C2 C3 C4

1 –0.29121 –0.37429 –0.93008 –0.68189
2 2.1243 –0.84122 –0.72689 –1.3309
3 –1.0465 –2.5549 0.6731 1.4169
4 –0.075195 –4.125 –0.091451 1.1377

Table 6: Weights between the input and hidden layer for lattice para-
meter c

Tabela 6: Ute`i med vnosom in skritimi plastmi za mre`ni parameter c

i Ei = C1 × RM + C2 × RT + C3 × RX + C4

C1 C2 C3 C4

1 –0.52211 –0.49087 –0.25122 0.054422
2 0.52211 0.49087 0.25122 –0.054422
3 1.0851 –0.95392 –0.34973 0.51105
4 –0.45506 –1.021 0.044623 0.29596

4 CONCLUSIONS

In this research, hexagonal lattice parameters and unit
cell volumes of non-stoichiometric apatites of
M10(TO4)6X2 were predicted from their ionic radii by an
ANN. The results reveal that the lattice-parameter errors
for the results of the apatites by the ANN were less than
1 % for a and 2 % for c, respectively. However, the non-
stoichiometric apatites with virtually exact formulas
generated the errors of up to around 3 % for both lattice
parameters because of their complex T sites. These
results indicate that the hexagonal lattice-parameter
prediction of the non-stoichiometric apatites with both
approximate and exact formulas were reliable, provided
that their T sites do not contain large quantities of ions
except for the ones used for the training dataset. It is
suggested that the accuracy of the predictions could be
improved if the training dataset could be modified with
the apatites containing different elements at the T sites to
overcome the complexity, so that a wider range of
possibilities could be investigated for demanding
applications where strict lattice parameters are needed
for the apatites with the desired elements.

U. KOCKAN et al.: ARTIFICIAL-NEURAL-NETWORK PREDICTION OF HEXAGONAL LATTICE PARAMETERS ...

78 Materiali in tehnologije / Materials and technology 48 (2014) 1, 73–79



5 REFERENCES

1 M. Kohn, J. Rakovan, J. M. Hughes, Phosphates: Geochemical,
Geobiological and Materials Importance, Mineralogical Society of
America, 2002

2 B. Wopenka, J. D. Pasteris, Mater Sci Eng C, 25 (2005), 131–43
3 S. Peroos, Z. Du, N. H. de Leeuw, Biomater, 27 (2006), 2150–61
4 M. I. Dominguez, J. Carpena, D. Borschnek, M. A. Centeno, J. A.

Odriozola, J. Rose, Journal of Hazard Mater, 150 (2008), 99–108
5 J. C. Goes, S. D. Figueiro, A. M. Oliviera, A. A. M. Macedo, C. C.

Silva, N. M. P. S. Ricardo, A. S. B. Sombra, Acta Biomater, 3
(2007), 773–8

6 E. Pecheva, T. Petrov, C. Lungu, P. Montgomery, L. Pramatarova,
Chem Eng J, 137 (2008), 144–53

7 S. Zhang, Y. S. Wang, X. T. Zeng, K. Cheng, M. Qian, D. E. Sun, W.
J. Weng, W. Y. Chia, Eng Fract Mech, 74 (2007), 1884–93

8 J. C. Elliott, Structure and Chemistry of the Apatites and Other Cal-
cium Orthophosphates, Elsevier, 1994

9 P. Wu, Y. Z. Zeng, C. M. Wang, Biomater, 25 (2004), 1123–30
10 S. Malinov, W. Sha, Comp Material Science, 28 (2003), 179–98
11 A. Bezazi, S. G. Pierce, K. Worden, E. H. Harkati, Int J Fatigue, 29

(2007), 738–47
12 R. P. Cherian, L. N. Smith, P. S. Midha, Artif Intell Eng, 14 (2000),

39–44
13 M. Col, H. M. Ertunc, M. Yilmaz, Mater & Des, 28 (2007), 488–95
14 C. Karatas, A. Sozen, S. Erguney, Expert Syst Appl, 36 (2009),

3514–21
15 H. K. D. H. Bhadeshia, ISIJ Int, 39 (1999), 966–79

16 U. Kockan, Z. Evis, J Appl Crystal, 43 (2010), 769–79
17 Z. Zhang, K. Friedrich, Comp Sci Tech, 63 (2003), 2029–44
18 P. A. Lucon, R. P. Donovan, Composites Part B, 38 (2007), 817–23
19 H. Demuth, M. Beale, M. Hagan, Matlab Neural Network Toolbox 6,

Users Guide, The Mathworks Inc., 2008
20 S. Samarasinghe, Neural Networks for Applied Sciences and Engi-

neering, Taylor&Francis, 2007
21 S. I. Gallant, Neural Network Learning and Expert Systems, The

MIT Press, 1993
22 K. Boughzala, E. B. Salem, A. B. Chrifa, E. Gaudin, K. Bouzouita,

Mater Res Bull, 42 (2007), 1221–9
23 B. Hamdi, H. E. Feki, J. Savariault, A. B. Salah, Mater Res Bull, 42

(2007), 299–311
24 http://webmineral.com/data/Svabite.shtml.
25 http://webmineral.com/data/Johnbaumite.shtml.
26 D. R. Lide, Handbook of Chemistry and Physics, Taylor&Francis,

2003
27 T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, E. B. Slamovich,

Biomater, 25 (2004), 2111–21
28 B. Basar, Z. Evis, Mater Sci Tech, 25 (2009), 794–8
29 Z. Evis, J Ceram Soc Japan, 114 (2006), 1001–4
30 M. Veiderma, K. Tonsuaadu, R. Knubovets, M. Peld, J Organometal

Chem, 690 (2005), 2638–43
31 L. Leon-Reina, J. M. Porras - Vazquez, E. R. Losilla, M. A. G. Aran-

da, Solid State Ionics, 177 (2006), 1307–15
32 J. E. H. Sansom, A. Najib, P. R. Slater, Solid State Ionics, 175

(2004), 353–5
33 Z. Evis, Ceram Inter, 33 (2007), 987–91

U. KOCKAN et al.: ARTIFICIAL-NEURAL-NETWORK PREDICTION OF HEXAGONAL LATTICE PARAMETERS ...

Materiali in tehnologije / Materials and technology 48 (2014) 1, 73–79 79


