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When designing machine equipment, geometrical figures or discontinuities such as notches, holes, steps and curves can occur.
Sudden cross-section changes, discontinuities and force flows cause concentrations, particularly in the stress area. Stress
concentrations may be formed due to dimensional features of a material or directions of applied forces. Such stress
concentrations are considered as they have a notch effect on the material. The notch effect may lead to a breaking and distortion
of a material. In this study, a mathematical model estimating the notch-factor values for a grooved round bar in torsion, a round
shaft with a transverse hole in torsion and a round shaft with a shoulder fillet in torsion, using artificial neural networks (ANN)
is introduced. The model estimates the notch factor using shaft dimensions, torque and corner rounding values. The ANN model
developed in the study quickly and accurately estimates the notch-factor values, otherwise obtained from the catalogues with
complicated analytical calculations. In this model, the uncertainties occurring in analytical calculations and the calculation
errors were eliminated, thus long calculation times were saved as well. The results reviewing the performance of the ANN
model developed for a grooved round bar in torsion, a round shaft with a transverse hole in torsion and a round shaft with a
shoulder fillet in torsion were quite good. In the study, a multiple regression analysis of the data was also performed, but no
conclusion evaluating the data was obtained.

Keywords: shafts, notch-sensitivity factor, torsion, artificial neural network, statistical analysis

Pri konstruiranju strojnih delov se pojavljajo nezvezne geometrijske oblike, kot so zareze, luknje, stopnice in krivine. Nenadna
sprememba prereza, nezveznosti in potek sil povzro~ajo koncentracijo napetosti v napetostnem obmo~ju. Koncentracije
napetosti v materialu lahko nastanejo zaradi dimenzijskih sprememb ali sprememb smeri delovanja sil. Taka koncentracija
napetosti se obravnava kot zarezni u~inek v materialu. Zarezni u~inek lahko povzro~i poru{itev ali izkrivljenje materiala. V tej
{tudiji je predstavljen matemati~ni model umetne nevronske mre`e (ANN), ki lahko obravnava faktor zareznega u~inka okrogle
palice z utorom, okrogle gredi s pre~no odprtino, obremenjeno s torzijo, in okrogle gredi z zaokro`enim prehodom. Model
dolo~a faktor zareznega u~inka z uporabo dimenzij, navora in radija zaokro`itev. Razvit ANN-model omogo~a hitrej{e in bolj
zanesljivo dolo~anje faktorja zareznega u~inka, ki ga sicer dobimo iz katalogov z zapletenimi analiti~nimi prera~unavanji. V
tem modelu so odpravljene nezanesljivosti, ki se pojavljajo pri analitskem prera~unavanju, odpravljene so ra~unske napake in
prihranjeno nam je dolgotrajno prera~unavanje. Pregledane so bile zmogljivosti ANN-modela, razvitega za torzijo okrogle
palice z utorom, torzijo okrogle gredi s pre~no odprtino in okrogle gredi z zaobljenim prehodom. V {tudiji je bila izvedena tudi
multipla regresijska analiza podatkov, vendar ni bilo mogo~e izlu{~iti ugotovitve, ki bi prispevala k oceni podatkov.

Klju~ne besede: gred, faktor zareznega u~inka, torzija, umetna nevronska mre`a, statisti~na analiza

1 INTRODUCTION

Breaks and deformations are observed on almost all
machine parts used for a power and force transmission.
In order not to have these undesired effects, the notch
factor is considered in the calculations. Thus, a forma-
tion of such effects is minimized or eliminated. Theore-
tical notch factors used in the calculations according to
the change in the calculations or type of strain affecting
the shafts vary. For each different type of strain, there are
many table values available, but it is an inconvenient
procedure to obtain the values required for the design
from such tables.

Mechanical damages formed as a result of fatigue
have been a subject of engineering studies for many
years. One of the first studies on this subject was made

by W. A. J. Albert who tested metal chains lifted up
under cyclic loadings in Germany in 1828. The term
"fatigue" was first used in 1839 by J. V. Poncelet.1

During the studies he made in 1850s in Germany,
August Wöhler started to develop design strategies in
order to avoid fatigue damage, testing iron, steel and
other metals under torsion, bending and axial loadings.
With his studies, Wöhler proved that fatigue was affected
by the average stress as well as by cyclic stresses.2

McClintock made the first theoretical research related
to the ductile damage, taking place as void growth.3 In
this research, it was concluded that the rate of void
growth definitely depends on three axial stress regions as
well as on the rate of hydrostatic equivalent stress. As a
result of his experiments, McClintock concluded that
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different samples do not always have the same unit
deformation in crack formation.

The study made by Rice and Tracey took McClin-
tock’s study to a higher level. With this study, it was
concluded that the rate of void growth definitely depends
on three axial stress regions as well as on the rate of
hydrostatic equivalent stress.4

With their experimental study, Hancock and Macken-
zie supported the idea that the orientability of ductility
for construction materials could be three-axial, and
revealed that the material damage had been caused by
high-degree hydrostatic pressure.5

By using the results of their experimental study,
Bridgman, Hancock and Mackenzie revealed damage-
unit-deformation and representation parameters of
triaxiality in a closed damage curve.6 Hancock and
Brown examined stress-unit deformation spaces on a
notched sample.7 In the study, damage was reviewed at
the centre point of the minimum cross-section where
triaxiality is the highest on a cylindrical notched sample.

Ozkan made a study about the notch-sensitivity
determination of shafts. He used an ANN model.8 Ozkan
et al. made a study about determining the notch factor on
the shafts under tensile stress. They also used an ANN
model.9

Recorded literature studies have revealed that
notched tensile tests are commonly applied experiments.
They show that notched tensile experiments include a
large number of notch types. Therefore, it is obvious that
modelling the data obtained from standard-experiment
results and notched tensile experiments will provide an
increase in the number of variables in experimental
studies.

The notch-factor selection and the calculations made
afterwards require long and inconvenient procedures and,
consequently, a significant amount of time and labour. It
is necessary to utilise computer programs to solve such
problems.

The aim of this study was to develop a mathematical
model that can provide for the best notch factors on a
grooved round bar in torsion, a round shaft with a trans-
verse hole in torsion and a round shaft with a shoulder
fillet in torsion by considering the formal characteristics
of the material affecting the notch factor and the torsio-
nal-stress effect influencing the shaft. The mathematical
model was developed using a multilayer feedforward

artificial neural network (MLP). In the study, a multiple
regression analysis of the data was made. Multiple-
regression and ANOVA analyses were also made, but
since their results did not help us interpret the data, the
study was focused on ANN. The artificial-neural-
network model developed within the study consisted of
three inputs for the round shaft with a shoulder fillet in
torsion and the grooved round bar in torsion, two inputs
for the round shaft with a transverse hole in torsion, one
hidden layer and one output.

2 ARTIFICIAL NEURAL NETWORKS

The concept of artificial neural networks first
appeared as the idea of simulating the principle operation
of the brain on digital computers. An artificial neural
network is a mathematical model inspired by the func-
tional structure of a biological neural network.10

Artificial neural networks consist of many operation
elements connected to each other. Operation elements in
artificial neural networks (nodes) function like simple
nerves. An artificial neural network consists of many
nodes connected to each other. The main unit of an
artificial neural network is an artificial nerve. An artifi-
cial nerve is much simpler than a biological nerve. In
Figure 1, an artificial neural element is shown. All the
artificial neural networks are derived from this main
structure. Differences in this structure allow different
classifications of artificial neural networks.

An ANN model consists of two main steps: the
training and the test. The meaning of learning in artificial
neural networks is to allow a neural network to produce
correct outputs by establishing the right connections bet-
ween the input and the output data relating to the pro-
blem. This procedure continues until the difference
between the estimated output and the desired output
decreases to a certain value. Artificial neural networks
learn with experience just like humans. For that purpose,
an experimental group is divided into two parts: the
training group and the test group. During the training
period, the network uses an inductive training model to
train the training group.11 The training process continues
in the network until the desired output value is ob-
tained.12 When certain amounts of the input are entered
in the network during learning, the network makes
changes to itself to be able to give similar responses.
Here, the error in question is the difference between the
estimated output and the generated output. After
training, the network is tested to find whether ANN has
actually learned, instead of just memorizing, the data. In
the test section, the data not used during the training is
used.

The performance of a developed ANN model is
determined using different error-analysis methods. In
general, such methods can be ranked as the absolute
fraction of variance (R2), the root-mean-square error
(RMSE) and the mean absolute-percentage error
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Figure 1: Artificial neural network
Slika 1: Umetna nevronska mre`a



(MAPE). The best performance of an ANN model is at
the highest value of R2 and at the lowest values of RMSE
and MAPE.13 Such parameters are defined with the
following equations:
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3 STRENGTH-REDUCTION FACTORS

Resistance diagrams are obtained using standard-
experiment test-bar surfaces that have been polished.
Dimensional and surface features of the actual machine
elements are different from the test bars. Therefore, the
values taken from a permanent-resistance diagram can-
not be used without considering the resistance-reduction
factors.14 The resistance limits of materials are affected
by the factors such as notch, surface roughness, dimen-
sion, manufacture method, heat treatment, environmental
effect, etc.15

In some cases, the results obtained for machine
elements with experiments show the existence of the
stresses much bigger than the normal stresses. The
reason for that is the geometrical difference between the
parts. The notch is the generally defined dimensional
difference.16

In design of machine elements, geometric figure
differences or discontinuities such as notches, holes,
steps or various groove roundings and keyways can
occur for certain reasons. Sudden section changes and
discontinuities cause concentrations in the force flow,
particularly in the stress area. Such stress concentrations
cause a notch effect on the material.17

3.1 Stress-concentration factor (Kt) and notch-sensiti-
vity factor (q)

The stress-concentration factor (Kt) is defined as the
ratio of the biggest stress generated at bottom of the
notch to the nominal stress:18,19
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In the calculation of torsional stress, the relations in
equations 5 and 6 are used:
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In the machine elements, the stress that is times the
calculated nominal stress is generated at the bottoms of
geometric figures. If the material is brittle, the notched
material is broken due to the static stress that is times
lower than the nominal stress. For example, if there is a
notch with a concentration factor Kt = 3 on a machine
element made of hardened steel, such an element is three
times more fragile than the unnotched one:17–19

K q Kc t= + −1 1( ) (7)

The stress-concentration factor (Kt ) is a value
depending on geometry. The fatigue-strength-reduction
factor indicating an active reduction in the material
strength is Kc . The notch factor depends on the geome-
trical shape of the notch and the sensitivity of the
material to the notch. If the effect of the notch’s
geometrical shape is represented with the theoretical
notch factor Kt , and the sensitivity of the material to the
notch is represented with the notch-sensitivity factor q,
the notch factor is calculated using the relation given in
equation 7.

4 RESULTS AND DISCUSSION

The data in this study was obtained by examining the
graphics relating to the notch factor from Peterson’s
book "Design Factors for Stress Concentration".20,21 The
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Table 1: Numbers of trainings and tests for the shafts under torsional stress
Tabela 1: [tevilo usposabljanj in podatki za gred, izpostavljeni torzijski obremenitvi

Notch-factor values for the shafts under torsional stress
Training Data Test Data Total Data

Round shaft with a
shoulder fillet in torsion Torsion 590 100 690

Round shaft with a
transverse hole in torsion Torsion 130 30 160

Grooved round bar in
torsion Torsion 450 110 560



graphics were transformed to digital values, obtaining
the data for the ANN learning and testing. In the notch
charts, there are three basic figures for the shafts under
the torsional-stress effect. These are a round shaft with a
shoulder fillet in torsion, a round shaft with a transverse
hole in torsion and a grooved round bar in torsion. In
Table 1, there are the numbers of trainings and tests used
for determining the notch factors for the three basic
figures.

In Table 1, the classification and the numbers for the
shafts under the torsional-stress effect are presented. The
input data used in ANN includes the maximum shaft
diameter (D), the minimum shaft diameter (d) and the
chamfer radius (r), while the output data is the notch
factor (Table 2).

Table 2: Input and output values for the notch factor of the shafts

Tabela 2: Vhodne in dobljene vrednosti za faktor zareze gredi

Determination input/output parameters for the shafts under
torsional stress

Symbol Name Input/output
D Maximum diameter of the shaft Input
d Minimum diameter of the shaft Input
r Chamfer radius Input

Kt Stress-concentration factor Output

As ANN has been generated, not all the experiment
data is used in the training. After the ANN system has

been established and the training procedure finished, 10
% of the experiment data is hidden from the system to
check whether ANN has given correct results. In the
scope of the study, 690 pieces of data for the round shaft
with a shoulder fillet in torsion, 160 for the round shaft
with a transverse hole in torsion and 560 for the grooved
round bar in torsion have been obtained with theoretical
calculations (Table 3). Out of such data, 590 pieces for
the round shaft with a shoulder fillet in torsion, 130 for
the round shaft with a transverse hole in torsion and 450
pieces for the grooved round bar in torsion were used for
the training purposes. The other data was saved for the
test purposes. The test data is used to find the error rate
of the ANN system estimations.

In the study, a feedforward, multiple-layer neural-
learning mechanism was used as the learning mecha-
nism. For the learning model, the Levenberg-Marquardt
algorithm (LMA) was used. During the determination of
the learning criteria in ANN, different network structures
were tried and the network structure with the minimum
error and maximum learning rate was selected. Accord-
ing to that, the best learning for the round shaft with a
shoulder fillet in torsion took place within a 3-4-1 net-
work structure, for the grooved round bar in torsion
within a 3-3-1 structure and for the round shaft with a
transverse hole in torsion it took place within a 2-3-1
network structure (Figure 2). In this study, a single
output layer and a single hidden layer were selected for
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Table 3: Input and output samples used in the ANN model
Tabela 3: Vhodni in izhodni vzorci, uporabljeni v ANN-modelu

Round shaft with a shoulder fillet in torsion Grooved round bar in torsion Round shaft with a transverse
hole in torsion

D d r Kt D d r Kt D d Kt

2 2.04 0.024 2.29 1 1.02 0.025 2.082 2 153.846 3.643
3 3.06 0.051 2.12 2 2.04 0.068 1.928 3 120.000 3.430
4 4.08 0.084 2 3 3.06 0.12 1.835 4 117.647 3.300
5 5.1 0.125 1.926 4 4.08 0.2 1.767 5 100.000 3.160

13 13.26 1.95 1.33 11 11.22 1.375 1.464 6 96.774 3.080
14 14.28 2.45 1.297 12 12.24 1.644 1.44 7 93.333 3.000
15 15.3 3 1.264 13 13.26 1.95 1.414 8 80.000 2.910
16 16.32 3.6 1.242 14 14.28 2.45 1.386 9 72.000 2.840
35 36.75 8.75 1.286 15 15.3 3 1.36 12 60.000 2.708
36 37.8 9.9 1.264 16 16.32 3.6 1.325 13 57.778 2.680
37 38.85 11.1 1.242 17 17.34 4.25 1.3 14 56.000 2.650
38 41.8 0.456 2.7 18 18.36 4.95 1.276 15 54.545 2.640
39 42.9 0.663 2.5 35 36.75 7.875 1.425 16 53.333 2.630
62 93 3.844 1.925 36 37.8 9 1.4
63 94.5 4.725 1.8 37 38.85 10.175 1.364
64 96 5.568 1.728 38 39.9 11.4 1.338
65 97.5 6.5 1.66 45 67.5 3.375 2.144
66 99 8.25 1.584 46 69 3.956 2.04
67 100.5 10.05 1.51 47 70.5 4.7 1.94
87 261 17.4 1.457 48 72 5.376 1.872
88 264 19.8 1.41 53 79.5 10.6 1.574
89 267 22.25 1.374 54 81 12.15 1.53
90 270 24.75 1.34 55 82.5 13.75 1.486
91 273 27.3 1.32 56 84 15.4 1.44



each type of the shafts. As a result of the experimental-
data training, it was observed that optimum outputs were
the models having eight neurons for the round shaft with
a shoulder fillet in torsion, seven neurons for the grooved
round bar in torsion and six for the round shaft with a
transverse hole in torsion. For all of these experimental-
data trainings, determination of the network structure
and its optimization, the Pythia software was used.

In the software, for each different notch situation (the
grooved round bar in torsion, the round shaft with a
transverse hole in torsion and the round shaft with a
shoulder fillet), the ANN model with the highest
performance was determined. For this purpose, different
variations were tried to determine the notch factor of the
shafts under the torsional effect, and the model with the
highest performance was selected as the ANN model
(Table 4).

In order to test the network structure of ANN, a nor-
malization of the inputs was implemented at first. The
normalization of the inputs and outputs was made within
the ranges of (–1, +1) or (0, –1). The normalization of
the input (xnor) is made with equation 8:

x
x x

x xnor

r min

max min

=
−
−

( )

( )
(8)

Here, xr represents the actual input value, xmin is the
minimum input value and xmax is the maximum input
value. The values used for the normalization are given in
Table 5.

Table 5: Values used for normalization
Tabela 5: Vrednosti, uporabljene za normalizacijo

Shafts under
torsion Parameters xmax xmin

Round shaft with
a shoulder fillet in

torsion

D (maximum
diameter of shaft) 91 2

d (minimum
diameter of shaft) 273 2.04

r (chamfer radius) 27.3 0.024

Grooved round
bar in torsion

D (maximum
diameter of shaft) 57 1

d (minimum
diameter of shaft) 85.5 1.02

r (chamfer radius) 17.1 0.025

Round shaft with
a transverse hole

in torsion

D (maximum
diameter of shaft) 16 2

d (minimum
diameter of shaft) 153.846 53.333

Formulization of neurons was made with the Fermi-
transfer function that is widely used in the ANN training
(equation 9). The Fermi-transfer function is a commonly
preferred function in the studies conducted in different
areas:

F
e

i x w
=

+ ∑− ⋅ −

1

1 4 0 51( . )nor

(9)

Here, xnor represents the normalized value of the input
as (I = 1, 2, 3, ..., n) and represents its weight value. The
weights obtained in the ANN model are given in Table
6. The Fermi functions created for each shaft type
considered in the study are given in equations 10, 11 and
12:

F
e

i D w d w rShoulder nor nor nor
filet ( ) (1 4 4

1

1 21 21
− − ⋅ + ⋅ +

=
+ ⋅ −∑ w21 0 5. )

(10)

F
e

i D w d w r wGrooved nor nor nor
( ) (1 3 4 0

1

1 21 21 21
− − ⋅ + ⋅ + ⋅ −

=
+ . )5∑ (11)

F
e

i D w d wTransverse hole nor nor
( ) ( .1 3 4 0

1

1 21 21
− − ⋅ + ⋅ −

=
+ 5 )∑ (12)

At the end of all these calculations, the output value
of the network is calculated with equation 13:

S f S S Sann i= − +( )max min min (13)

Here, Smax represents the maximum output value as fi
(I = 1, 2... n) and Smin represents the minimum output
value.

After the training and test procedures, the results
obtained from the ANN model were compared to the
theoretical (actual) calculation results considering the
statistical error. In the error analysis, the performance of
both the training and test data is evaluated. In the study,
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Figure 2: Suitable network structures for the notch factors of the
shafts for: a) round shaft with a shoulder fillet in torsion, b) grooved
round bar in torsion, c) round shaft with a transverse hole in torsion
Slika 2: Primerne strukture mre`e za faktor zareznega u~inka na gredi
pri torziji: a) okrogla gred z zaokro`enim prehodom, b) okrogla palica
z utorom, c) okrogla gred s pre~no odprtino

Table 4: Determination of the appropriate network design
Tabela 4: Dolo~anje oblikovanja primerne mre`e

Round shaft with a
shoulder fillet in

torsion

Grooved round bar
in torsion

Round shaft with a
transverse hole in

torsion
MLP 3-15-1 MLP 3-22-1 MLP 2-3-1
MLP 3-13-1 MLP 3-19-1 MLP 2-11-1
MLP 3-23-1 MLP 3-30-1 RBF 2-9-1
MLP 3-13-1 MLP 3-5-1 MLP 2-7-1
MLP 3-20-1 MLP 3-8-1 MLP 2-7-1
RBF 3-24-1 MLP 3-32-1 RBF 2-2-1
MLP 3-30-1 RBF 3-7-1 MLP 2-5-1
MLP 3-30-1 RBF 3-18-1 MLP 2-8-1
MLP 3-20-1 RBF 3-15-1 MLP 2-4-1
MLP 3-21-1 RBF 3-22-1 RBF 2-10-1
MLP 3-47-1 RBF 3-30-1 RBF 2-5-1



while statistical analyses were made with the Statistica
software, the graphics were created with the MATLAB
software. When Figures 3, 4 and 5 are reviewed, it can
be seen that theoretical-calculation results and ANN
results are very close. With the developed ANN model,
the results determining the notch factors are very close to
the actual values.

The performance of the ANN model depends on the
deviation amount (the error) between the actual output
values and the output values obtained with the ANN
model. For the analysis of such error amounts, three
statistical values were used. These are the statistical error
amount (the root-mean-square error – RMSE), the abso-
lute rate of change ( and the average error rate (MAPE).
If, in a model, the RMSE value is low, the value is close
to one and the MAPE value is close to zero, it is
concluded that the data sample was solved with the ANN
model with a very low deviation. When Figures 6, 7, 8
and Table 7 are reviewed, it can be observed that the test

performance of the ANN model developed to estimate
the notch factors is very good.
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Table 6: Weights calculated for the shafts under the torsional-stress effect
Tabela 6: Izra~unane ute`i gredi pri torzijskih napetostih

Round shaft with a shoulder fillet in torsion Grooved round bar in torsion Round shaft with a transverse
hole in torsion

i W1i W2i W3i i W1i W2i W3i i W1i W2i

1 1.034673 –0.994349 1.193954 1 –1.383967 1.996118 –11.65191 1 0.576589 –1.068331
2 2.166340 –1.506025 5.954506 2 –0.228184 –1.205579 1.134065 2 0.062530 –0.394452
3 –5.204485 –3.426240 –2.290548 3 –0.626798 0.816721 –1.226995 3 –1.182488 0.407942
4 0.550379 0.391485 –1.669116

Figure 4: Comparison of the notch-sensitivity factors for a round
shaft with a shoulder fillet in torsion (ANN – the actual data)
Slika 4: Primerjava faktorja ob~utljivosti na zarezo pri okrogli gredi z
zaokro`enim prehodom pri torziji (ANN – dejanski podatki)

Figure 3: Comparison of the notch-sensitivity factors for a grooved
round bar in torsion (ANN – the actual data)
Slika 3: Primerjava faktorja ob~utljivosti na zarezo pri okrogli palici z
utorom (ANN – dejanski podatki)

Table 7: Statistical values of the notch factors for a round shaft with a shoulder fillet in torsion, grooved round bar in torsion and round shaft with
a transverse hole in torsion
Tabela 7: Statisti~ne vrednosti faktorja zareze pri okrogli gredi z zaokro`enim prehodom pri torziji, okrogli palici z utorom in okrogli gredi s
pre~no odprtino

R2 RMSE MAPE
Round shaft with a shoulder fillet in torsion 0.998496193 0.00045234 0.00133894419
Grooved round bar in torsion 0.999026056 0.000929826 0.00092129141
Round shaft with a transverse hole in torsion 0.999852111 0.00048452 0.00013216197

Figure 5: Comparison of the notch-sensitivity factors for a round
shaft with a transverse hole in torsion (ANN – the actual data)
Slika 5: Primerjava faktorja ob~utljivosti na zarezo pri okrogli gredi s
pre~no odprtino pri torziji (ANN – dejanski podatki)



In Figures 5, 6 and 7, the performance of a YSA
model is available for the notch-factor estimation. Here,
the closeness value between the actual values and the
estimated values is graphically shown. As seen in the
figures, the estimations made by the ANN model were
rather close to the actual values.

In the study, a multiple regression analysis (RA) of
the data was made as well and specifically adjusted R²
values were observed. In the analysis, a suitable R² could
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Table 8: Statistical error amounts obtained with the regression analysis and ANN
Tabela 8: Statisti~na napaka, dobljena z regresijsko analizo ANN

Multiple regression analysis Artificial neural network
(ANN)

R² Adjusted R R² (ANN)
Round shaft with a transverse hole in torsion 0.98972458 0.98766949 0.998496193
Round shaft with a shoulder fillet in torsion 0.65122920 0.63513208 0.999026056
Grooved round bar in torsion 0.72001774 0.69953123 0.999852111

Figure 9: ANOVA analysis; notch-sensitivity factor for a grooved
round bar in torsion
Slika 9: ANOVA analiza; faktor zareznega u~inka pri okrogli palici z
utorom pri torziji

Figure 8: Notch factor for a round shaft with a transverse hole under
the torsional effect
Slika 8: Faktor zareze pri okrogli gredi s pre~no odprtino pri torziji

Figure 7: Notch factor for a grooved round bar under the torsional
effect
Slika 7: Faktor zareze pri okrogli palici z utorom pri torziji

Figure 6: Notch factor for a round shaft with a shoulder fillet in
torsion
Slika 6: Faktor zareze pri okrogli gredi z zaokro`enim prehodom pri
torziji

Figure 10: ANOVA analysis; notch-sensitivity factor for a round shaft
with a shoulder fillet in torsion
Slika 10: ANOVA analiza; faktor zareznega u~inka pri okrogli gredi z
zaokro`enim prehodom pri torziji



only be obtained for the round shaft with a transverse
hole in torsion. In Table 8, the statistical error amounts
(R²) obtained with the regression analysis and the
statistical error amounts (R²) of the ANN test data were
compared. An ANOVA analysis of the data was made as
well, but no results interpreting the data were obtained
(Figures 9, 10 and 11). Statistically, only the parameter
of the maximum diameter of the shaft affected the notch
sensitivity.

5 CONCLUSIONS

In this study, an ANN model developed for esti-
mating the notch factors of the shafts under the torsional
effect has been introduced. The values trained and tested
with ANN were obtained by reviewing the charts in the
literature.19,20 When comparing the notch-factor values
calculated with the equations obtained from the ANN
model with the experimental values, very good results
were obtained. With this study, it was clearly found that
the notch factors of the shafts can be estimated using
ANN without the need for theoretical number crunching.
With ANN, complicated and long calculations, indivi-
dual chart readings and interpolation errors have been
eliminated. Thus, this enabled us to obtain more correct
results in a faster way. Also, in the study, the data was
subject to a multiple regression analysis. At the end of
this analysis, since no results interpreting the data could
be obtained, the study was focused on ANN.
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Figure 11: ANOVA analysis; notch-sensitivity factor for a round shaft
with a transverse hole in torsion
Slika 11: ANOVA analiza; faktor zareznega u~inka pri okrogli gredi s
pre~no odprtino



Appendix A: Notch-determining examples for the shafts under the torsional stress using ANN mathematical
formulae

Example 1: Round shaft with a transverse hole in torsion
Primer 1: Okrogla gred s pre~no odprtino pri torziji

N/W
INPUT NEURONS OUTPUT NEURON

N1 N2 N3 N1 2.919787

WEIGHTS (W)
–1.175518 0.574674 0.061991 N2 –2.252147
0.405123 –1.101991 –0.384738 N3 4.610924

Q = 1/(1+Exp(–4 · (i1 · w1 + i2 · w2 + i3 · w4 – 0.5)))

WEIGHTS
N1 0.007621

N4 0.09827 Q 2.7295444N2 0.280911
N3 0.120636

Example 2: Round shaft with a shoulder fillet in torsion
Primer 2: Okrogla gred z zaokro`enim prehodom pri torziji

N/W
INPUT NEURONS OUTPUT NEURON

N1 N2 N3 N4 N5 N1 –1.192632

WEIGHTS (W)

–0.527014 0.436152 –7.038280 0.600414 –4.732217 N2 3.673670
–0.866854 0.590241 –2.128378 0.041027 –3.205369 N3 7.462569
1.456036 –11.101250 –4.762488 –1.340877 5.252158 N4 1.609339

N5 –6.440091
Q = 1/(1+Exp(-4 · (i1 · w1 + i2 · w2 + i3 · w4 – 0.5)))

WEIGHTS
N1 0.079370

N4 0.20223 Q 1.564021224
N2 0.005604
N3 0.000003
N4 0.147278
N5 0.000942

Example 3: Grooved round bar in torsion
Primer 3: Okrogla palica z utorom pri torziji

N/W
INPUT NEURONS OUTPUT NEURON

N1 N2 N3 N4

WEIGHTS (W)
3.759538 –1.522419 3.805108 N1 1.946942

–1.108545 –1.898673 –3.206606 N2 3.777504
N3 –1.771848

Q = 1/(1+Exp(–4 · (i1 · w1 + i2 · w2 + i3 · w4 – 0.5)))
WEIGHTS

N1 0.935048
N4 0.19874 Q 1.600998225N2 0.280911

N3 0.120636

Appendix B: Stress-concentration-factor charts

Round shaft with a shoulder fillet in torsion20,21

�0 = Tc/J, where
c = d/2 and J = �d4/32
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Round shaft with a transverse hole in torsion20,21

Grooved round bar in torsion20,21

�0 = Tc/J
where c = d/2
and J = �d 4/32
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