Non-metallic inclusion engineering is one of the most important aspects in steelmaking today. There are several thermodynamic and kinetic tools available that help to form non-metallic inclusions of the desired size, distribution and composition in steel. The goal of this work was to study the thermodynamic conditions responsible for the formation of multiphase inclusions in re-sulphurised steel grades that are produced for the automotive industry. Nozzle clogging on the continuous casting machine and surface defects on rolled rods are problems typically attributed to non-metallic inclusions. Samples of the 30MnVS6 steel grade were taken at five different stages of ladle treatment. The samples were prepared for metallography and images of inclusions were taken using a SEM. Thermodynamic calculations were made using the Thermo-calc software for each sample and for multiple inclusions in order to determine which phases are the most stable at a given stage of the ladle treatment. It was found that high-melting-point calcium sulphide (CaS) and spinel (MgO·Al2O3) inclusions and low-melting-point calcium aluminate (12CaO·7Al2O3) or calcium alumosilicate (2CaO·Al2O3·SiO2) inclusions are the most stable phases in current steelmaking practice.

Keywords: calcium modification, CaS formation, non-metallic inclusion engineering

1 INTRODUCTION

The production of clean steel is one of the most important aspects in the steelmaking of special steel grades today. Clean steel is not defined only as steel with a low total content of non-metallic inclusions, but also as steel with an engineered size, distribution and composition of these inclusions. This is especially true for the steel grades produced for the automotive industry, where sulphide inclusions are used to increase the machinability of steel. A typical re-sulphurised steel grade produced in large quantities nowadays is 30MnVS6; its standard chemical composition can be seen in Table 1.

This research focuses on the formation of multiphase non-metallic inclusions and looks at the thermodynamic conditions at different points of secondary steelmaking.

2 THERMODYNAMICS OF DEOXIDATION AND MODIFICATION OF INCLUSIONS

After oxygen rafination the steel has a high soluble oxygen concentration. In order to reduce it, elements with a high oxygen affinity (silicon, manganese and aluminium) are added. Deoxidation reactions and free-energy changes in the standard state are given in Table 2.2

Aluminium has the highest affinity for oxygen and therefore if its concentration in the melt is high enough, solid alumina inclusions are formed. On the other hand,
if the aluminium concentration is low a ternary system of inclusions MnO-SiO2-Al2O3 is a result of a complex deoxidation. Kiessling\cite{1} made an extensive research on this system and found that the properties of inclusions with a low melting point (MnO-SiO2, 3MnO-Al2O3-3SiO2) are much more beneficial than those with a high melting point (Al2O3, SiO2) since they are softer and can be more easily deformed\cite{1}. Thermodynamic models\cite{4,5} together with experimental and industrial trials\cite{6,8} have been employed to study the system in detail. Kang and Lee\cite{6} found that for w(Mn) + w(Si) = 1 \%, a MnO/SiO2 ratio in the range from 0.5 to 2 gives low melting temperatures, with the ratio of 1 giving the lowest and also the widest window for the alumina content of an inclusion, which is otherwise in the range from w = 10 \% to w = 20 \%.

With high aluminium concentrations in the steel, good thermodynamic conditions are met for the formation of the spinel MgO-Al2O3 phase\cite{9}. According to Park et al.\cite{10,11} there are two mechanisms for the formation of the MgO-Al2O3 phase. The first is the singular spinel formation route and the second is the crystallization that takes place on the solidification path of alumosilicate slag droplets. In our case the first is more likely, so the reactions governing this route are given:

\[
2[Al] + 3(MgO)_{\text{slag or refractor}} = 3[Mg] + (Al2O3) \quad (1)
\]

\[
[Mg] + [O] = (MgO)_{\text{inclusion}} \quad (2)
\]

\[
4(MgO)_{\text{inclusion}} + 2[Al] = (MgO-Al2O3)_{\text{inclusion}} + 3[Mg] \quad (3)
\]

Free-energy changes in the standard state for the Reactions 2 and 3 are given in Table 3.

Table 3: Free-energy changes in the standard state for Reactions 2 and 3

<table>
<thead>
<tr>
<th>Reaction \cite{11}</th>
<th>(\Delta G^\circ/1(\text{kJ/mol}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mg] + [O] = (MgO)</td>
<td>-89.98 - 0.08194(T)</td>
</tr>
<tr>
<td>4(MgO){\text{inclusion}} + 2[Al] = (MgO-Al2O3){\text{inclusion}} + 3[Mg]</td>
<td>-423.01 + 0.275(T)</td>
</tr>
</tbody>
</table>

Several mechanisms for the removal of the spinel phase have been discussed\cite{11,12,13}. Using a high basicity slag and a calcium treatment are the most successful. The latter has been investigated in great detail for the solid alumina modification. Both thermodynamic\cite{14,19,20} and kinetic\cite{21,22} fundamentals have been laid. With the addition of calcium, CaO-Al2O3 (CA) inclusions with a low melting point are formed based on Reaction 4\cite{21}; however, calcium also has a high affinity for sulphur, so a CaS inclusion can be formed based on Reaction 5:

\[
x[Ca] + (1-2/3x)Al2O3 = (CaO)(Al2O3)_{1-x} + 2/3x[Al] \quad (4)
\]

where 0 < x = 1;

\[
[Ca] + [S] = (CaS)_{\text{inclusion}} \quad (5)
\]

The CA phases formed are: CaO-6Al2O3 (CA6), CaO-2Al2O3 (CA2), CaO·Al2O3 (CA), 12CaO-7Al2O3 (C12A7), 3CaO·Al2O3·(CaA)\cite{24}. The phase with the lowest melting point is C12A7. The CA phase is also liquid at steelmaking temperatures\cite{25}. They are formed according to the following reactions:

\[
(CaO) + 6(Al2O3) = (CaO-6Al2O3) \quad (6)
\]

\[
12(CaO) + 7(Al2O3) = (12CaO-7Al2O3) \quad (7)
\]

The free-energy changes in the standard state for the Reactions 5, 6 and 7 are given in Table 4\cite{25,26}.

Table 4: Free-energy changes in the standard state for Reactions 5, 6 and 7

<table>
<thead>
<tr>
<th>Reaction\cite{25,26}</th>
<th>(\Delta G^\circ/1(\text{kJ/mol}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ca] + [S] = (CaS)_{\text{inclusion}}</td>
<td>-542531 + 124.15(T)</td>
</tr>
<tr>
<td>(CaO) + (Al2O3) = (CaO-Al2O3)_{\text{inclusion}}</td>
<td>-19246 – 18(T)</td>
</tr>
<tr>
<td>12(CaO) + 7(Al2O3) = (12CaO-7Al2O3)_{\text{inclusion}}</td>
<td>+617977 – 612(T)</td>
</tr>
</tbody>
</table>

Both non-fully modified alumina inclusions and CaS inclusions can be the reason for nozzle clogging on the continuous casting machine. Janke et al.\cite{27} made a thermodynamic model to improve the castability and confirmed it with practical results. Vermeulen et al.\cite{28} made experiments to see how different refractories react with steel, slag and inclusions. Lamut et al.\cite{29} found that the spinel-type inclusions (MgO,MnO)·Al2O3, CaS and non-fully-modified alumina inclusions (CaO-2Al2O3) are the main reasons for clogging.

3 EXPERIMENTAL

Samples of the re-sulphurised steel grade 30MnVS6 were taken at five different stages of ladle furnace treatment: after homogenization, before and after calcium addition, after sulphur addition and 20 min after sulphur addition. The samples were taken using the Sample-on-Line method or the Lollipop-sampling method, they are marked 1–5.

Chemical analyses were on the samples using optical emission spectroscopy with an instrument made by Spectro, LAVMC12A.

The samples were metallographically prepared and investigated using a scanning electron microscope JEOL JSM-6390 LV equipped with an EDS Inca X-sight module from Oxford Instruments.
The methodology used when analysing the inclusions was as follows: the inclusion was found, different phases were identified using a line or a mapping analysis. Afterwards, a point analysis was made for each separate phase. The results obtained with the point analyses were then used for the thermodynamic calculation.

The thermodynamic analysis of the inclusions was performed with Thermo-Calc TCW5 software. The calculations were made using the SSUB3 and SLAG1 databases.

4 RESULTS

Two different types of inclusions were found in sample 1: solid alumina inclusions either with a low MgO content or with no MgO content and inclusions from the MnO-SiO2-Al2O3 system, which are either solid or liquid. Examples can be seen in Figures 1 and 2.

The Fe content in the samples is due to the matrix, so it was disregarded in the thermodynamic calculations. The phase composition of different inclusions is shown in Table 5.

At steelmaking temperatures the complex phases calculated using Thermo-calc software are presented in Table 6.

Table 5: Phase composition of inclusions 1, 2, 3 and 4

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Al2O3</th>
<th>SiO2</th>
<th>MnO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>80</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>44</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>4-1</td>
<td>32</td>
<td>40</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>4-2</td>
<td>72</td>
<td>22</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6: Calculated phase composition of inclusions 1, 2, 3 and 4 at steelmaking temperatures

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>MgO·Al2O3</th>
<th>Al2O3</th>
<th>SiO2</th>
<th>3Al2O3·2SiO2</th>
<th>2MnO·SiO2</th>
<th>MnO·2Al2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>32</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>4-1</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>57</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>4-2</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Liquid inclusions from the MnO-SiO2-Al2O3 system are still present in sample 2. There are also solid spinel-type inclusions. A mapping analysis of such an inclusion was made and it can be seen in Figure 3. It is about 8 μm in diameter.

The calculated phase composition at steelmaking temperatures of the central part of this inclusion is shown in Table 7.
Table 7: Calculated phase composition of the central part of inclusion 5 at steelmaking temperatures

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Phase composition, w%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgO·Al₂O₃</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>

The inclusion analysed in sample 3 is the large multiphase macro inclusion number 6. It is about 25 μm in diameter. A mapping analysis is shown in Figure 4.

Phase compositions of different parts of inclusion 6 are shown in Table 8. A magnified SEM image on the right central part of the inclusion 6 is seen in Figure 5.

Table 8: Calculated phase composition of different parts of inclusion 6 at steelmaking temperatures

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Phase composition, w%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12CaO·7Al₂O₃</td>
</tr>
<tr>
<td>6-1</td>
<td>7</td>
</tr>
<tr>
<td>6-2</td>
<td>58</td>
</tr>
<tr>
<td>6-3</td>
<td>15</td>
</tr>
<tr>
<td>6-4</td>
<td>57</td>
</tr>
<tr>
<td>6-5</td>
<td>47</td>
</tr>
</tbody>
</table>

Table 9: Calculated phase composition of different parts of inclusions 7 and 8 at steelmaking temperatures

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Phase composition, w%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12CaO·7Al₂O₃</td>
</tr>
<tr>
<td>7-1</td>
<td>12</td>
</tr>
<tr>
<td>7-2</td>
<td>59</td>
</tr>
<tr>
<td>8-1</td>
<td>13</td>
</tr>
<tr>
<td>8-2</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 3: A mapping analysis of a spinel-type inclusion with the CaS and xCaO·yAl₂O₃·zSiO₂ phases

Slika 3: Ploskovna analiza spinelnega vključka s CaS in fazami xCaO·yAl₂O₃·zSiO₂

Figure 4: A mapping analysis of a large multiphase inclusion 6

Slika 4: Ploskovna analiza večfaznega vključka 6

Figure 5: A magnified SEM image of inclusion 6

Slika 5: Povečan del vključka 6 (SEM)

Figure 6: SEM image of two two-phase inclusions

Slika 6: SEM-posnetek dveh dvofaznih vključkov
The second two inclusions analysed are two-phase inclusions; they can be seen in Figure 6. Their calculated phase composition at steelmaking temperatures is shown in Table 9.

In samples 4 and 5 there are examples of liquid inclusions from the MnO-SiO2-Al2O3-CaO system. Predominantly, however, the multiphase inclusions shown in Figure 7 were found.

The calculated phase composition at steelmaking temperatures of the two inclusions is shown in Table 10.

The free energies at standard state calculated at 1600 °C for the most stable phases of the inclusions found in samples 4 and 5 are given in Table 11.

5 DISCUSSION

In the first sample, pure alumina inclusions were found, an example is inclusion 2 and there is already evidence of the formation of a spinel phase. It can be seen in alumina inclusion 1, where there is enough magnesium to contribute to 41 % of the spinel phase calculated in equilibrium conditions. It is also evident that the higher concentration of alumina in the inclusions from the MnO-SiO2-Al2O3 system the higher is their melting point. Inclusion 3 with a low alumina content is liquid at steelmaking temperatures and inclusion 4 with a high alumina content is solid.

In the second sample the MgO content of the investigated inclusions has increased almost to the equilibrium spinel state, as shown in Table 7. Inclusion 5 is a typical representative. Already there are a phase from the CaO-Al2O3-SiO2 system and a CaS phase forming at the edge of the inclusion. The solid MgO·Al2O3 acts as a nucleus for these phases.

The inclusion 6 in sample 3 is made out of a predominantly liquid matrix of two phases: 12CaO·7Al2O3 and 2CaO·Al2O3·SiO2. There are several examples of pure MgO phases, they have been formed according to Reaction 2, and because they are solid at steelmaking temperatures they have been incorporated into the liquid matrix. It is evident that the sulphur concentration increases towards the edge of the inclusion. This is in agreement with the literature[22,23]. The sulphur concentration in steel is at this moment insufficient to form a stable CaS phase. The inclusions 7 and 8 in this steel sample are two-phase inclusions, the lighter shade is a mostly CaS phase and the darker shade is either mostly spinel (MgO·Al2O3) phase or mostly liquid CaO·Al2O3·SiO2 phase. They are about 2 μm in size.

In the last two samples mostly one kind of multiphase inclusion was found. They are composed of three phases. The first one is the spinel (MgO·Al2O3) phase, this is the darkest. The lightest is the CaS phase. The middle shade phase is a CaO-Al2O3-SiO2 system phase. These are liquid at steelmaking temperatures, whereas the spinel and CaS are solid.

The spinel phase formed in the early stages of the ladle furnace treatment, the mechanisms for its formation have been explained[10,11]. After the addition of calcium, the modification of alumina, spinel type and MnO-SiO2-Al2O3 system based inclusions began. The alumina modification was successful and the liquid CA inclusions were formed. The calcium reduced the manganese and
also liquid CaO-Al₂O₃-SiO₂ system inclusions were formed. In general, calcium was unable to modify the spinel-type inclusions. In a previous study, unmodified spinel inclusions surrounded by liquid CA were found, but the sulphur concentration was lower and they were eventually modified. In the case of a higher sulphur concentration, calcium’s ability to modify the alumina and spinel-type inclusions is greatly inhibited and mostly the CaS phase is formed. Previous studies reported the modification of spinel-type inclusions were dealing with low sulphur concentrations.

According to the thermodynamic calculations the CaS and spinel phases are very stable in sample 5 and also the low-melting-point CA and CaO-Al₂O₃-SiO₂ system based phases are stable, only a small amount of MgO was detected, which is probably due to the measurement technique. According to Table 11 these phases also have the lowest free energies at 1600 °C, only spinel inclusions do not have a low free energy at this point in the process, but they have been created earlier, at the beginning of ladle furnace treatment.

Because these types of inclusions (9, 10) are mostly solid (CaS, spinel), only a small part being liquid (12CaO·7Al₂O₃, 2CaO·Al₂O₃·SiO₂), they do not have the tendency to combine and form larger inclusions that float to the slag more easily. They therefore have a negative effect on castability; studies have shown that phases found in this type of inclusions are also found on the submerged entry nozzles on the continuous casting machine and cause nozzle clogging.

It should be noted that some large exogenous inclusions were also found, they act as nuclei for smaller indigenous inclusions, but they were not the focus of this research. Because of their large size they are quickly removed to the slag.

6 CONCLUSIONS

Thermodynamic conditions for the formation of multiphase non-metallic inclusions have been investigated. Figures showing the typical inclusions have been presented for each sample taken. Based on the results, the following conclusions can be drawn:

- High aluminium concentrations after tapping decrease the ability to form liquid MnO-SiO₂-Al₂O₃ system based inclusions and increase the ability for spinel-type inclusions to be formed.
- Calcium modifies alumina, aluminosilica and MnO-SiO₂-Al₂O₃ system based inclusions.
- In the case of a high sulphur concentration the calcium does not modify the spinel (MgO-Al₂O₃) type inclusions
- Multiphase type of inclusions CaS, spinel (MgO-Al₂O₃) and 12CaO·7Al₂O₃, 2CaO·Al₂O₃·SiO₂ are detrimental to the castability of the steel.

7 REFERENCES

2. G. Pierson, B. Sander, Amélioration des Performances de Coupe des Aciers Doux de Découpage par Maitrise de leur Contenu Inclusionnaire, EUR16020, 1995
15. F. Tehovnik, B. Koroušič, V. Prešern, Optimization of the Modification of Nonmetallic Inclusions in Steel with CaSi Wire Injection, Kovine, Zlitine, Tehnologije, 26 (1992) 1–2, 125–130
24 Schlackenatlas, Slag Atlas, Verlag Stahleisen, Düsseldorf 1981, 39