This paper presents the results of a study on the possibility of replacing cutting inserts and introducing dry-cutting mode (without water rinsing) with a chainsaw machine in the underground structures of the Hotavlje I quarry. In the experiment a column-driven chainsaw machine Fantini G.70 was used with tungsten-carbide-based cutting inserts. The article presents the physico-mechanical properties of the natural stone called the Hotaveljčan limestone and the state of discontinuities, which has a significant impact on the efficiency of stone cutting. In the experiment the cutting characteristics of two types of inserts, type H-13A and type H6T, were compared. The specimens of both types of the used inserts were subjected to a detailed metallographic investigation to evaluate the changes in the surface structure and hardness, the results of which are presented in detail.

Keywords: tungsten-carbide inserts, chainsaw machine, dimensional stone

1 INTRODUCTION

The efforts to study and understand the cutting mechanisms applied to hard limestone using chainsaw machines are not new in Slovenia. The first chainsaw machines were introduced in Slovenian natural-stone quarries in the late nineties; they were originally equipped with carbide cutting tools and later progressively replaced with the new generation of tools. The new generation of tools for metal machining included inserts of tungsten carbide coated with a thin film of a hard material that was chemically deposited on the substrate and welded to the metal shank.

Until now, no research project aiming at a better understanding of the stone-cutting mechanisms using a chainsaw has been initiated in Slovenian natural-stone quarries. For example, in Belgium the first results obtained with this technique were widely published in specialized literature1–9: Mingels (1971)10 and Focant (1977)11 described sawing applications in Belgian red marble; Boxho (1971)12, Brych (1975)13 and Neerdael (1975)14 worked with Belgian blue stone. Later, very few scientific publications were dedicated to the chainsaw-cutting problems.

Research objectives were at first aimed at decreasing the exploitation costs of the chainsaw machines and then at optimizing the technological parameters in order to correctly set up the cutting machines. The very first studies tried to investigate the machine’s performance with respect to the intrinsic properties of the stone being cut, comparing it with the results of the cutting tests performed in a laboratory. These studies highlighted the considerable losses of the machines due to the friction generated at the contact between the chain and the arm of the machine, and also the losses in the hydraulic system driving the machine.

Although the sawing techniques have been particularly improved in the last 20 years, they are still problematic when hard and/or abrasive stones are cut. The main problems encountered with this type of materials are a low productivity, a high consumption of cutting tools and, thus, the related high production costs.

2 EXTRACTION OF NATURAL STONE FROM THE HOTAVLJE I QUARRY

For the hard materials such as Hotavljčan limestone, brittle breakage is typical. This means that this kind of material, when burdened with an additional load, can only sustain a minor degree of plastic strains (approximately 5 %). Thus, it can instantly break in a...
plastic zone. Because of these characteristic, the areas with plastic zones are considered unstable and dangerous for the stability of the underground structure.

The occurrence of cracking requires a consideration of the rocks with cracks and their statuses. Thus, an observed rock is called a mound. It is the cracks that cause local differences in the mechanical properties of the rock which differ considerably from those measured in the laboratory. Examinations of mechanical and physical properties of natural stone were carried out in accordance with European Union standards EN 12058:2004 (Natural stone products – Slabs for floors and stairs – Requirements). Table 1 shows the physico-mechanical properties of three color variations of natural decorative stone called Hotavelčan.

<table>
<thead>
<tr>
<th>Type of investigation</th>
<th>Unit</th>
<th>Hotavljšek red</th>
<th>Hotavljšek gray</th>
<th>Hotavljšek gray-pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density without pores and cavities</td>
<td>t m$^{-3}$</td>
<td>2.90</td>
<td>2.74</td>
<td>2.73</td>
</tr>
<tr>
<td>Density</td>
<td>t m$^{-3}$</td>
<td>2.74</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>Coefficient of density</td>
<td>0.94</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>%</td>
<td>0.06</td>
<td>0.01</td>
<td>0.70</td>
</tr>
<tr>
<td>Water absorption</td>
<td>%</td>
<td>0.36</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>Grinding wear</td>
<td>cm3 50 cm$^{-2}$</td>
<td>29.5</td>
<td>27.1</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>GPa</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Angle of internal friction</td>
<td>°</td>
<td>22–35</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bending tensile strength</td>
<td>MPa</td>
<td>–</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>Bending tensile strength after 48 freeze/thaw cycles</td>
<td>MPa</td>
<td>–</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Average compressive strength:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– dry</td>
<td>MPa</td>
<td>137.8</td>
<td>114.0</td>
<td>–</td>
</tr>
<tr>
<td>– wet</td>
<td>MPa</td>
<td>150.8</td>
<td>156.0</td>
<td>–</td>
</tr>
<tr>
<td>– after 25 freeze/thaw cycles</td>
<td>MPa</td>
<td>187.8</td>
<td>118.0</td>
<td>–</td>
</tr>
</tbody>
</table>

Since the knowledge on rock-mass fracturing is very important in our case in order to determine the mechanical properties of a rock mass, it has to be described by means of a statistical examination of the dispersion of the measured cracks in the quarry and wells, and a description of its occurrence. The main statistical characteristic of a particular occurrence of a large statistical dispersion indicates that random cracks and crevices thicken considerably with a mild dip to the northeast.

There are two quarries of colored calcareous stone in the Hotavlje deposit. The Hotavlje I quarry, also called the lower quarry, is the older and larger quarry, operating in the northern part of the deposit, 435 m to 450 m above sea level. In the central part of the deposit a new and smaller quarry is in its opening phase. The Hotavlje II quarry, also called the upper quarry, lies between 478 m and 488 m above sea level. Both quarries are situated on the steep eastern side of the Srednje Brdo Mountain.

In 1993, in the colored-calcareous-stone Hotavlje I quarry, a new method of natural-stone-block production was introduced, called the underground stopping, which, until then, had not been used in the Republic of Slovenia. This method was proposed because of the geological structure and the state of the quarry, and also due to an increasing demand for this particular stone. Extraction in the gallery is done with a diamond-wire saw and chainsaw combined. This method proved to be the most efficient one (Figure 1).

For the extraction of natural stone from the Hotavlje I underground quarry a chain machine with hydraulic/clamping columns is used (Figure 2). Hydraulic pillars allow the machine blade with the cutting chain to move in both horizontal and vertical directions. The cutting chain machine is placed directly in front of the stopface and is rigidly attached. Horizontal cuts are first made at the bottom and top and finally on the sides. Process water is used for cooling the saw chain and washing the stone slurry out of the cut.

![Figure 1: Column-driven chainsaw machine Fantini G.70 on the location in the Hotavlje I quarry](image1)

![Figure 2: Column-driven chainsaw machine Fantini G.70](image2)
Table 2 shows technical details/characteristics of the column-driven chainsaw machine Fantini G.70 used in underground quarries.

Table 2: Technical properties of column-driven chainsaw machine Fantini G.70

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of the chainsaw</td>
<td>6000 kg/2000 kg</td>
</tr>
<tr>
<td>Total installed power</td>
<td>52.2 kW (70 HP)</td>
</tr>
<tr>
<td>Chain rotation speed</td>
<td>0–0.71 m s⁻¹</td>
</tr>
<tr>
<td>Arm/blade cutting-speed rate</td>
<td>0–0.07 m² min⁻¹</td>
</tr>
<tr>
<td>Cutting width</td>
<td>38 mm</td>
</tr>
<tr>
<td>Arm/blade length</td>
<td>2900 mm</td>
</tr>
<tr>
<td>Water consumption</td>
<td>20 L min⁻¹</td>
</tr>
<tr>
<td>Cutting speed</td>
<td>2–4 m² h⁻¹</td>
</tr>
</tbody>
</table>

As presented in Table 2 the cutting speed is between 2 m² h⁻¹ and 4 m² h⁻¹, the cut width is 38 mm and the cut depth is 2.40 m or more. The speed of the blade movement is up to 0.07 m min⁻¹ and the chain speed is up to 0.7 m s⁻¹. The minimum stope-face width is 5.80 m. The cutting method is based on cutting the rock using widia or diamond plates that are mounted on the cutting chain machine’s blade. The cutting machine’s blade moves along the clogged rail and guiding rails. Process water is used for cooling the saw chain and washing the stone slurry out of the cut.

3 THEORY OF NATURAL-STONE CUTTING

An improvement of the sawing techniques in the Hotavlje I quarry initially requires an understanding of the cutting responses of the tools currently available on the market. This implies a development of the working methodology, making it possible to correctly characterize the performances of cutting configurations independently of the machines, the operators and any other parameters that can influence the operations of the machines. The field experimental approach was selected because it makes it possible to very quickly estimate the performances of various types of cutting tools used in a quarry.

Rake angle α: Cutting and normal forces decrease monotonically with the increasing rake angle as seen in Figure 3. Most of the benefit to the insert forces is achieved at a rake angle of 20°, beyond which a further marginal improvement weakens the cutting insert’s strength and its potential to survive. The rake angle can be either positive or negative. The rake angles between +20° and +30° can be chosen for cutting weak rocks and coal. High rake angles may not be beneficial since the inserts with these angles are more susceptible to a gross failure.

Wear angle ϕ: The wear flat is almost parallel to the cutting direction; however, it generally tends to incline in the opposite direction forming a wear angle. This angle is only a few degrees and it becomes smaller for the hardest and strongest materials. The occurrence of the wear flat changes the tool-tip geometry and, consequently, results in the generation of higher tool forces. The normal force is the component most affected by the wear, e.g., a wear flat of around 1.0 mm can drastically increase the F_n/F_t ratio. It is also reported that a large clearance angle relieves the wear effect and provides a better overall efficiency even if, as a consequence, a small or slightly negative rake angle is introduced.

Clearance angle β: The clearance angle, which is between the lower surface of the insert and the plane parallel to the cutting direction, also has pronounced effects on the cutting insert’s forces. The investigations showed that the tool forces drop sharply after a value of around 5° and stay sensibly constant. To meet the kinematic needs, the clearance angle is generally designed to be around 10°.

When cutting stone with a chainsaw two forces are acting on the cutting inserts (Figure 3):

- Axial (thrust) force of the chainsaw arm/blade F_a, which allows the cutting inserts to progress from the surface of the stone into the depth d.
- Force of the chain rotation F_c, which allows the cutting and progression of the chainsaw arm/blade to the depth d of the cutting grooves.

The cutting depth of individual cuts depends on the axial force F_a which is proportional to and decreases with the increasing cutting surface and the cutting resistance of the rock (strength, toughness and hardness of the rock). Rock cutting begins when the critical pressure is reached, which must be greater than the strength of the rock.

A chip formation can be described as a destruction of the stone consistency using a tool. In the literature, the models based on simple geometries of the cutting edges divide the process of forming a cut into two mechanisms. The cutting mechanism of marble is explained as a plastic deformation (a crushed zone) and a brittle
fracture of stone. The plastic deformation and the brittle fracture are influenced by the cutting conditions such as the depth of cut, the tip shape of the cutting tool, and the properties of the stone. When cutting stone with diamond tools, the mechanical interaction of the tool and the workpiece results in the process forces, mainly caused by the following factors:

- elastic and plastic workpiece deformation by the cutting edges;
- friction between the stone and the matrix;
- friction between the swarf and the matrix.

In front of the grains engaged in the process, stresses are caused by tangential forces. In this zone, the insert is forced out through the grooves in front of and beside the grains. While the rock shows elastic characteristics up to its ultimate stresses, it is necessary for the cutting to reach a certain minimum grinding thickness. The material to be cut is deformed by the compressive stress conducted below the diamond. When the load is removed, an elastic reversion leads to critical tensile stresses, which cause a brittle fracture. This mechanism affected by tensile stresses is termed the secondary chip formation.

The general insert is carried away by the coolant. The following factors influencing this process are directly or indirectly contained in the model:

- physical material properties of the stone;
- forces between the diamonds and the materials;
- stress distribution in the rock;
- temperatures at the tool/workpiece interface.

The cutting force and energy play important roles in all the stone-machining processes. They are functions of the maximum chip thickness and the geometry of the idealized sawing chip.

The axial (thrust) force of the chainsaw arm/blade, \(F_n \), was calculated by Purtić \(^{18} \):

\[
F_n = \frac{\sigma_u l d \sin(\alpha + 2\varphi)}{\cos \alpha \cdot \cos^2 \varphi} = k \cdot \sigma_u l d \tag{1}
\]

where

- \(\sigma_u \) (MPa) – compressive strength of the rock;
- \(l \) (m) – length (thickness) of the cutting inserts;
- \(d \) (m) – depth of the insert penetration into the rock;
- \(k \) (m) – coefficient of friction.

Coefficient of friction:

\[
k = \frac{\cos \alpha \cdot \cos^2 \varphi}{\sin(\alpha + 2\varphi)} \tag{2}
\]

The value of coefficient of friction \(k \) is dependent on the angle of the rock internal friction \(\varphi \) and the rake angle \(\alpha \):

| Coefficient of friction \(k \) | 0.27 | 0.30 | 0.36 | 0.44 |
| Angle of rock internal friction \(\varphi \) | 15 | 17 | 20 | 22 |

The cutting speed \(v_{cut} \) is usually obtained with the following equation:

\[
v_{cut} = d \cdot m \cdot v_{chain} \quad (m^2 \cdot s^{-1}) \tag{3}
\]

where

- \(d \) (mm) – depth of cutting;
- \(m \) (–) – number of cutting inserts;
- \(v_{chain} \) (m s\(^{-1}\)) – speed of the chain with cutting inserts.

The depth of cutting is strongly dependent on the compressive strength of the rock and the force of the chainsaw arm or blade (Figure 4). Specific energy is also a very important factor in determining the efficiency of cutting systems and it is defined as the work required to excavate a unit volume of a rock. Hughes \(^{17} \) and Mellor \(^{20} \) demonstrated that specific energy can be formulated in the following way:

\[
S_E = \frac{\sigma^2}{2E} \tag{4}
\]

where

- \(S_E \) – specific energy;
- \(\sigma \) – compressive strength of the rock;
- \(E \) – elasticity modulus.

The work done with the cutting force \(F \) is the work needed to excavate a unit volume of yield. Dependent on rock strength and toughness, degree of fracturing, machine type and method of operation, cutting insert type and condition, available tool forces (machine size and power) and penetration depth, the specific energy amounts to:

\[
S_E = \frac{\sigma^2}{2E} = \frac{90.2^2 \text{MPa}}{2 \cdot 25.000 \text{MPa}} = 162.7 \text{kPa}
\]

Stone cutting is the result of the interference between the insert grits and hard stone at the stone-tool interface. The traditional tool is constituted of diamond grits that are joined to the metal shank with the metal matrix. The new-generation tools in metal machining are constituted of inserts of tungsten carbide, coated with a thin film of diamond that was chemically deposited on the substrate.
(chemical-vapor-deposition (CVD) diamond inserts) and welded to the metal shank2–4.

4 EXPERIMENTAL WORK: IN-SITU ATTEMPTS TO USE DIFFERENT INSERTS

The presented research undertaken at the Faculty of Natural Sciences and Engineering, the University of Ljubljana, in 2009/2012 in collaboration with the Marmor Hotavlje company was conducted to understand the main problems encountered while cutting hard limestones such as Hotaveljčan and to propose technical solutions for increasing the competitiveness of the column-driven chainsaw machine Fantini G.70 in the Hotavlje I quarry (Figure 1).

The main objectives of the research were as follows:

- Increasing the machine’s performance so that it reaches a higher productivity when cutting the hard Hotaveljčan limestone. The operators usually empirically determined the operating parameters of the machines on the basis of their personal experiences. Consequently, the performance was strongly influenced. The determination of the optimum parameters that should increase the performance required a fundamental scientific study.

- Identifying the potential implementation of dry cutting without the use of process water for rinsing the stone debris from the cut and cooling the inserts.

- Increasing the lifespan of the cutting tools and reducing the maintenance costs of the chain-saw machines.

Two different values of the side rake angle, at the insert/tool holder from n1–n6, angle $–6^\circ$ and at the insert/tool holder n0, angle $–25^\circ$, were adopted. These were used to simulate the actual engagement between the insert and stone during sawing and, therefore, the cracking phenomena between the insert and stone during sawing. A scheme of the tool engaged in stone cutting is shown in Figures 5 and 6, while Figure 7 depicts a detail of the actual set up of the cutting machine. The cutting force along the cutting direction F_n and the cutting force F_t perpendicular to the cutting direction were evaluated from Figure 3.

In the experiment, two types of inserts were used, namely:

- Fantini Sandvik H6T CT30 insert grade (a hardness of 1753 HV) and
- Fantini Segatrice H-13A insert grade (a hardness of 1310 HV).

The cutting force along the cutting direction F_n and the cutting force F_t perpendicular to the cutting direction were calculated using the data from Table 3.

In addition to the data from Table 3, the values of the cutting speed (0–60 m min–1 (the average of 55 m min–1))
and many different values of the depth of cut (between 0.03 mm and 0.06 mm) were also used.

The forces exerted on the cutting inserts, as presented in Figure 8, led to the wear of these inserts during the cutting operation, presented in Figure 9.

The chainsaw cutting machine (Fantini G-70) operates using the following stepwise procedure to cut natural stone: It starts in Position 0 (Figure 9) where the initial cut using only the tip of the cutting blade is made and it is then forced into Position 1 (a blade angle of 10° to 72°). Then the blade is repositioned into Position 2 where it starts to move towards Position 3 (a blade angle of 72° to 81°). In this arrangement the chain with the cutting inserts is cutting the stone piece along the whole of the width, i.e., from 0–250, generating the highest forces exerted on the blade and on the cutting chain. When Position 3 is finally reached, the blade starts to rotate slightly so as to move into Position 4 (a blade angle of 81° to 107°). Finally, it moves into Position 5 (a blade angle of 107° to 166°). This is done in a manner very similar to the one at the beginning of the cutting process. The extent of horizontal cuts is limited to a depth of 2.50 m and the minimum length of 5.75 m. Vertical cuts are limited to a depth of 2.5 m and a height of 4.6 m. The construction of the cutting machine also enables the cuts to be made under different angles, exerting additional forces on the blade and the chain, thus leading to premature wear of the cutting inserts.

5 RESULTS AND DISCUSSION

The results of the cutting process described in the section about the experimental work associated with Figure 9 are depicted in Figures 10 and 11. Two different cutting inserts were employed for the cutting purposes. Both cutting inserts were mounted on the same chain of the Fantini G-70 cutting machine so as to make the comparison of the cutting inserts as reliable as possible. Figure 10 shows the behavior of the H6T C30 Fantini Sandvik cutting inserts mounted on the cutting chain cutting the natural stone from the Hotavlje quarry in the horizontal manner. For this purpose the following process parameters were used: the chain speed varied from 53.0 m min⁻¹ to 55.3 m min⁻¹ and the average cutting speed increased from 3.5 m² h⁻¹ to 5.5 m² h⁻¹. The entire duration of the pure horizontal cut with the chainsaw took 186 minutes. Throughout the cutting process, the consumption of time was also recorded. In the case of the cutting inserts H-13A Fantini Segatrice (Figure 11) the horizontal cutting manner was also applied and the chain speed varied from 51.5 m min⁻¹ to 55.6 m min⁻¹, while the average cutting speed varied from 6.3 m² h⁻¹ to 7.9 m² h⁻¹. The entire duration of the pure horizontal cut with the chainsaw took 169 min. A comparison of the results from Figures 10 and 11 indicated that the yield in the case of the H-13A cutting inserts was higher in relation to the average cutting speeds, whilst the time consumption was pretty much the same. However, the variation in the chain speed was smaller in the case of the H6T cutting inserts which applies to the average cutting speeds as well. In the case of H6T, these showed less dissipation or variation in all the positions or incisions (Pos. 0 to Pos. 5) which inevitably led to less pronounced wear of the cutting inserts due to fragmentation than in the case of the H-13A cutting inserts. When the H-13A cutting inserts were used, the variations in the chain speeds were much more obvious as the...
speeds varied, for all the incisions (Pos. 0 to Pos. 5), with sharp peaks and drops.

This led to less uniform wear and a more frequent deformation of the cutting inserts due to fragmentation. The recorded peaks and drops in the chain speeds in the case of H-13A are visible in Figure 12 showing an array of grooves made in a stepwise manner as the mechanical properties of the natural stone were changing locally, as were the mechanical properties of the cutting inserts.

The measurements of the surface and subsurface microhardness of the cutting inserts showed that the degradation of the surface hardness was severe but it was, in all the cases, limited to an area within a few tenths of a millimeter under the surface (Table 4).

A brief metallographic overview of the applied cutting plates provided us with a definite proof of surface and subsurface degradation. This was observed using LM and the microhardness measurements made on the surface and, in a stepwise manner, also under the surface. Table 4 summarizes the Vickers hardness measurements with the average number of measurements of 5.

It is clear that in both cases the hardness degrades quite rapidly and dramatically from the surface towards the inner region of a cutting plate, which is a consequence of the thermomechanical load on the surface of the cutting plate. On the micrographs of the H-13A cutting inserts in Figures 13a and 13b severe material wear can be observed on the cutting edges of the cutting inserts due to a complete rounding and cracking of the initially rectangular edges. On the top (Figure 13b), the indents of the diamond pyramid can still be seen allowing clear indications of the places where the microhardness HV measurements were made. The protective TiN layer of the surface and the edges of H6T CT30 is still intact, which was also confirmed with the HV measurements showing a higher hardness of the cutting inserts after the operation (Figure 13c).

Slika 11: Rezultati rezanja horizontalnega reza z rezalnimi ploščicami H-13A

Slika 12: Vidni kanal oziroma profil reza, ki nastaja med rezanjem z rezalnimi ploščicami

Slika 13: LM-posnetki uporabljenih rezalnih ploščic: a) rezalni robovi ploščic H-13A in b) z lepo vidnimi vtiski po uporabi diamantne piramide v okviru HV-meritev. Na sliki b) je prikazana enakomerna velikost delcev WC. Površina rezalne ploščice H6T CT30 izkazuje veliko število majhnih poškodb na še vedno prisotni zaščitni plasti iz TiN. Na sliki c) so vidna mesta z diamantno piramido nastalih vtiskov.

Table 4: Microhardness measurements of HV 0.05 for H-13A and H6T CT30 cutting inserts

<table>
<thead>
<tr>
<th>Cutting insert</th>
<th>Average hardness on the surface</th>
<th>Average hardness 0.1 mm under the surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade H-13A</td>
<td>1240.75</td>
<td>1471.40</td>
</tr>
<tr>
<td>Grade H6T CT30</td>
<td>1269.00</td>
<td>1614.67</td>
</tr>
</tbody>
</table>

TABLE 4: Mikrotrdote HV 0,05 rezalnih pločic H-13A in H6T CT30

Materiali in tehnologije / Materials and technology 49 (2015) 1, 103–110 109
6 CONCLUSIONS

The present work shows that tungsten-carbide H-13A inserts allow an increase in the cutting efficiency by more than 66% and, therefore, a decrease in the amounts of force and energy involved in stone sawing. This means that the tool is exposed to the stresses lower than those affecting a tungsten-carbide insert probably causing a reduction of tool wear. Moreover, the cutting power of the tungsten carbide H-13A inserts is lower than that of the tungsten-carbide H6T CT30 inserts.

A single model describes well the actual cutting force caused by the interaction between a tungsten-carbide insert and stone. This means that a unique simple equation can represent the relationship between the cutting force and the chip-cutting area.

An analysis of the tungsten-carbide insert wear over time and of the relationship between the tungsten-carbide wear and the cutting-force value compared to the behavior of the chemical-vapor-deposition (CVD) diamond inserts is currently the topic of further studies in order to verify that this type of tool is suitable for sawing the Hotaveljčan limestone.

Acknowledgement

Special thanks go to Marmor Hotavlje; despite the fact that the study was not formally funded, they unselfishly shared their knowledge and contributed a lot of voluntary work, engaging their human resources and their hardware.

7 REFERENCES

1. F. I. Dagrain, Understanding stone cutting mechanisms for the design of new cutting tools sequences and the cutting optimization of chain saw machines in Belgian blue stone quarries, Diamante, Aplicazioni & Technologia, 17 (2011) 66, 55–67
10. C. Mingels, Utilisation d’une haveuse Perrier dans une carrière de marbre, Annales des Mines de Belgique, 2 (1971) 1, 121–130
14. B. Neerdael, Contribution ill’etude de la destructibilite des roches dures telles que les calcaires crino’idiqes de Soignies, Faculte Polytechnique de Mons, Travail de fin d’études, 1975, 5–18
15. K. Fifer, Natural stone ‘Hotavije’ geotechnical report / Poročilo o preiskavi naravnega kazma “Hotavije”, ZAG, Department of mater- ials, Ljubljana 2005, 35