In the present study the effect of the boriding process on the adhesion and wear properties of AISI H10 steel has been investigated. The boride layer was characterized by light microscopy, X-ray diffraction and the Vickers microhardness. The X-ray diffraction analyses of the boride layers on the surface of the steels revealed the existence of the compounds FeB, Fe$_2$B, CrB, Cr$_2$B and MoB. Depending on the chemical composition of the steel, the boride-layer thickness on the surface of the AISI H10 steel was found to be 63.72 μm. The hardness of the boride compounds formed on the surface of the steels ranged from 1648 to 1964 HV0.05, whereas the Vickers hardness value of the untreated steel was 306 HV0.05. The wear tests were carried out in a ball-on-disc arrangement under dry-friction conditions at room temperature with an applied load of 10 N and with a sliding speed of 0.3 m s$^{-1}$ for a sliding distance of 1000 m. It was observed that the wear rate of the borided and non-borided AISI H10 steels ranged from 3.15 mm$^3$/N m to 62.84 mm$^3$/N m.

Keywords: AISI H10, boriding, microhardness, adhesion, wear rate

Boriding is a thermochemical treatment in which boron atoms diffuse through the surface of metallic substrates. As boron is an element of relatively small size it diffuses into a variety of metals, including ferrous, non-ferrous and some superalloys. The boriding process provides a high surface hardness as well as good wear properties in terms of adhesion, abrasion, and surface fatigue. The boriding treatment is carried out by heating substrates in the temperature range 973 K – 1323 K for a period of time ranging from 0.5 h to 12 h. The boron is supplied to the material surface by a solid, liquid, gaseous or plasma medium. Boriding is used in numerous applications in industries such as the manufacturing of machine parts for plastics and food processing, packaging and tooling, as well as pumps and hydraulic machine parts, crankshafts, rolls and heavy gears, motor and car construction. The wear behavior of borided steels has been evaluated by a number of investigators. However, there is no information about the friction and wear behaviors of borided AISI H10 steel. The main objective of this study was to investigate the effect of the boriding process on the wear behavior of borided AISI H10 steel. The structural, Daimler-Benz adhesion and tribological properties were investigated using light microscopy, XRD, SEM, EDS, microhardness tests and a ball-on-disc tribotester.
carried out in a solid medium containing an Ekabor-II powder mixture placed in an electrical resistance furnace operated at temperatures of 1123 K and 1223 K for 2 h and 6 h under atmospheric pressure. The microstructures of polished and etched cross-sections of the specimens were observed under a Nikon MA100 light microscope. The presence of borides formed in the coating layer was confirmed by means of X-ray diffraction equipment (Shimadzu XRD 6000) using Cu–Kα radiation. The hardness measurements of the boride layer on steel and an untreated steel substrate were made on the cross-sections using a Shimadzu HMV-2 Vickers indenter with a 50 g load.

The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of the boride layers. This well-known Rockwell-C indentation test is prescribed by the VDI 3198 norm, as a destructive quality test for coated compounds.17–20 The principle of this method is presented in the upper-right-hand part of Figure 1.18 A load of 1471 N was applied to cause coating damage adjacent to the boundary of the indentation. Three indentations were conducted for each specimen and scanning electron microscopy was employed to evaluate the test.

2.2 Friction and wear

To perform the friction and wear of the borided samples a ball-on-disc test device was used. In the wear tests, WC-Co balls of 8 mm in diameter supplied by H. C. Starck Ceramics GmbH were used. Errors caused by the distortion of the surface were eliminated by using a separate abrasion element (WC-Co ball) for each test. The wear experiments were carried out in a ball-on-disc arrangement under dry-friction conditions at room temperature with an applied load of 10 N and with sliding speeds of 0.3 m s⁻¹ for a sliding distance of 1000 m (track diameter 0.015 m). The wear tests were made with an 8-mm diameter WC–Co ball with a Young’s modulus of 598 GPa. The maximum compressive contact pressure in the central point of the contact area was calculated from the Hertzian equation.21 According to the Hertzian equation, the maximum contact pressures of 2824 MPa (for disc $E_d = 325$ GPa and $v_d = 0.26$, for ball $E_b = 598$ GPa and $v_b = 0.22$) were obtained at a normal load of 10 N. Before and after each wear test, each sample and abrasion element was cleaned with alcohol. After the test, the wear volumes of the samples were quantified by multiplying the cross-sectional areas of the wear by the width of the wear track obtained using a Taylor-Hobson Rugosimeter Surtronic 25 device. The wear rate was calculated with the following Equation (1):

$$W_k = \frac{W_v}{MS} \text{ (mm}^3/\text{N m})$$

where $W_k$ is the wear rate, $W_v$ is the worn volume, $M$ is the applied load and $S$ is the sliding distance. Friction coefficients depending on the sliding distance were obtained through a friction-coefficient program. The surface profiles of the wear tracks on the samples and the surface roughness were measured using a Taylor-Hobson Rugosimeter Surtronic 25. The worn surfaces were investigated using scanning electron microscopy.
3 RESULTS AND DISCUSSION

3.1 Characterization of the boride coatings

The cross-section light micrographs of the borided AISI H10 steel for temperatures of 1123 K and 1223 K for 2 h and 6 h are shown in Figure 2. As can be seen, the borides formed on the AISI H10 substrate have a saw-tooth morphology. It was found that the coating/matrix interface and the matrix could be easily distinguished and the boride layer had a columnar structure. Depending on the boriding time and temperature, the boride-layer thickness on the surface of the AISI H10 steel ranged from 12.86 μm and 63.72 μm (Figure 3).

Figure 4 shows the XRD pattern obtained from the surface of the borided AISI H10 steel at 1123 K and 1223 K for treatment times of 2 h and 6 h. The XRD patterns show that the boride layer consists of borides such as MB and M₂B (M=Metal; Fe, Cr). The XRD results showed that the boride layers formed on the H10 steel contained the FeB, Fe₂B, CrB, Cr₂B and MoB phases (Figures 4a and 4d).

Microhardness measurements were carried out on cross-sections from the surface to the interior along a...
The microhardness of the boride layers was measured at 10 different locations at the same distance from the surface and the average value was taken as the hardness.

The boride-layer hardness of the sample borided at 1223 K for 6 h was found to be 1964 HV0.05, the boride-layer hardness of the sample borided at 1223 K for 2 h was 1816 HV0.05, the boride-layer hardness of the sample borided at 1123 K for 6 h was 1765 HV0.05, while the boride-layer hardness of the sample borided at 1123 K for 2 h was 1648 HV0.05. On the other hand, the Vickers hardness values were 306 HV0.05, for the untreated AISI H10 steel. Figure 5 shows that increasing the boriding temperature and treatment time increases the boride-layer hardness. When the hardness of the boride layer is compared with the matrix, the boride-layer hardness is approximately five times greater than that of the matrix.

### 3.2 Rockwell-C adhesion

A standard Rockwell-C hardness tester was employed in this study. The damage to the boride layer was compared with the adhesion-strength quality maps HF1–HF6. In general, the adhesion-strength quality HF1–HF4 defines sufficient adhesion, whereas HF5 and HF6 represent insufficient adhesion. SEM micrographs of the indentation craters for the samples borided at 1223 K for 6 h are given in Figure 6. There were radial cracks at the perimeter of the indentation craters without flaking and the adhesion of the boride layer on the sample borided at 1223 K for 6 h was sufficient. The adhesion-strength quality of this boride layer is related to HF1.

### 3.3 Friction and wear behavior

**Figure 7** shows that increasing the boriding temperature and treatment time increases the surface-roughness values. For the AISI H10 steel it was observed that the surface-roughness values increased with the boriding treatment.
Gunes and Sahin reported that the surface-roughness values increased with an increase in the boriding temperature.

**Table 1**: Surface-roughness values of the non-borided and borided AISI H10 steel

<table>
<thead>
<tr>
<th>Unborided</th>
<th>Borided</th>
</tr>
</thead>
<tbody>
<tr>
<td>1123 K – 2 h</td>
<td>0.09</td>
</tr>
<tr>
<td>1123 K – 6 h</td>
<td>0.34</td>
</tr>
<tr>
<td>1223 K – 2 h</td>
<td>0.39</td>
</tr>
<tr>
<td>1223 K – 6 h</td>
<td>0.45</td>
</tr>
<tr>
<td>1223 K – 6 h</td>
<td>0.52</td>
</tr>
</tbody>
</table>

**Figure 7** shows the wear rate of the non-borided and borided AISI H10 steel. Reductions in the wear rates of the borided steels were observed according to the non-borided steels. Due to the hardness of the FeB and CrB phases, the steel showed more resistance to wear. The lowest wear rate was obtained in the AISI H10 steel borided at 1223 K for 6 h, while the highest wear rate was obtained in the non-borided AISI H10 steel. The wear-test results indicated that the wear resistance of the borided steels increased considerably with the boriding treatment and time. It is well known that the hardness of the boride layer plays an important role in the improvement of the wear resistance. As shown in **Figures 5** and 7, the relationship between the surface microhardness and the wear resistance of the borided samples also confirms that the wear resistance was improved with the increasing hardness. This is in agreement with reports of previous studies. 

When the wear rate of the borided steel is compared with the non-borided steel, the wear rate of the borided steels is approximately five times lower than that of the non-borided steels.

**Table 2**: The friction coefficients of the non-borided and borided AISI H10 steel

<table>
<thead>
<tr>
<th>Unborided</th>
<th>Borided</th>
</tr>
</thead>
<tbody>
<tr>
<td>1123 K – 2 h</td>
<td>0.64</td>
</tr>
<tr>
<td>1123 K – 6 h</td>
<td>0.38</td>
</tr>
<tr>
<td>1223 K – 2 h</td>
<td>0.44</td>
</tr>
<tr>
<td>1223 K – 6 h</td>
<td>0.48</td>
</tr>
<tr>
<td>1223 K – 6 h</td>
<td>0.53</td>
</tr>
</tbody>
</table>

The SEM micrographs of the worn surfaces of the non-borided and borided AISI H10 steel are illustrated in **Figures 8** and 9. **Figure 8a** shows the SEM micrographs of the wear surfaces of the non-borided AISI H10 steel. In **Figure 8a**, the worn surface of the non-borided steel was rougher and coarser wear-debris particles were present. The wear region of the borided steel, debris, delamination wear, surface grooves and cracks on the surface can be observed (**Figure 9**). There were micro-cracks, abrasive particles and small holes on the worn surface of the boride coatings. In the wear region of the borided AISI H10 steel, there were cavities probably formed as a result of layer fatigue (**Figure 9**) and cracks concluded in delaminating wear. **Figure 9** show the wear surfaces and the cross-sectional surface (CS) of a wear mark obtained from the wear region by analyzing multiple profilometry surface line scans using a Nanovea ST-400 non-contact optical profiler. It was observed that the depth and width of the wear trace on the surfaces of the samples decreased with an increase in the boriding temperature and time (**Figure 9**). **Figure 9** shows the EDS analysis obtained from **Figure 9g**. Fe-based oxide layers formed as a result of the wear test. The spallation...
of the oxide layers in the sliding direction and their orientation extending along the wear track were identified. When the SEM image of the worn surfaces of the non-borided sample is examined, it can be seen that the wear marks in Figure 8a are larger and deeper.

4 CONCLUSIONS

In this study, wear behavior and some of the mechanical properties of the boride layer on the surface of borided AISI H10 steel were investigated. Some of the conclusions can be drawn as follows:

• The boride-layer thickness on the surface of the AISI H10 steel was obtained, depending on the boriding process.
• The multiphase boride coatings that were thermally grown on the AISI H10 steel were composed of the FeB, Fe3B, CrB, Cr7B and MoB phases;
• The surface hardness of the borided steel was in the range 1648 HV0.05 – 1964 HV0.05, while for the untreated steel substrate it was 306 HV0.05;
• The lowest wear rate was obtained in the steel borided at 1223 K for 6 h, while the highest wear rate was obtained for the non-borided steel;
• The wear rate of the borided steel was found to be approximately five times lower the wear rate of the non-borided steel;
• As a result of boriding, the low surface hardness of the AISI H10 steel was improved.

5 REFERENCES

1 M. Hudakova, M. Kusy, V. Sedlicka, P. Grgač, Analysis of the boronized layer on K190PM tool steel, Mater. Tehnol., 41 (2007) 2, 81–84
17 Verein Deutscher Ingenieure Normen, VDI 3198, VDI-Verlag, Düsseldorf 1991