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A high-transition-temperature (high-TC) superconductor is an important material used in many practical applications like
magnetically levitated trains and power transmission. The superconducting transition temperature TC is determined by the
layered crystals, bond lengths, valency properties of the ions and Coulomb coupling between electronic bands in adjacent,
spatially separated layers. The optimal TC can be attained upon doping and applying the pressure for the optimal compounds.
There is an algebraic relation for the optimal TC of the optimal compounds, TCO = KB

–1�/(��), where � and � are two structural
parameters, KB is Boltzmann’s constant, � is a universal constant and TCO is the optimal transition temperature. Nevertheless, the
TC of the non-optimum compounds is smaller than TCO. To predict the TC for the all compounds, we developed a prediction
model based on the machine-learning method called support vector regression (SVR) using structural and electronic parameters
to predict TC. In addition, the principal component analysis (PCA) was applied to reduce dimensions and interdependencies
among the parameters, and particle swarm optimization (PSO) was utilized to search for the optimal parameters of SVR for an
improved performance of the prediction model. The results showed that the proposed PCA-PSO-SVR model takes advantage of
the machine-learning method to directly predict TC and theoretically provide guidance on measuring TC.
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Visoka temperatura prehoda v superprevodnost (TC) je pomembna funkcionalna lastnost materiala za mnoge vrste prakti~ne
uporabe, kot je naprimer uporaba magnetne levitacije za vlake ali prenos mo~i. Temperaturo prehoda v superprevodnost TC

dolo~a plastovitost kristala, dol`ina medatomskih vezi, valen~ne lastnosti ionov in Coulombovo sklapljanje med sosednjimi
valen~nimi pasovi prostorsko lo~enih plasti. Optimalna TC se lahko dose`e z dopiranjem (dodajanjem, legiranjem) in uporabo
tlaka za optimalno kemijsko sestavo. Obstaja algebrai~na zveza za optimalno TC optimalne spojine, TCO = KB

–1�/(��), kjer sta � in
� dva strukturna parametra, KB je Boltzmannova konstanta, � je univerzalna konstanta in TCO je optimalna temperatura prehoda.
Vendar je TC neoptimalne spojine vedno manj{a kot TCO. Avtorji tega prispevka so za napoved TC vseh spojin razvili model na
osnovi metode strojnega u~enja. Za napoved TC so uporabili vektorsko regresijo (SVR) z odgovarjajo~imi strukturnimi in
elektronskimi parametri. Dodatno so uporabili osnovno komponentno analizo (PCA, angl.: Principal Component Analysis), da
so lahko zmanj{ali soodvisnosti med parametri. Uporabili so {e optimizacijo mno`ic delcev (PSO; angl.: Particle Swarm
Optimization) za iskanje optimalnih parametrov SVR in izbolj{anje lastnosti modela. Raziskave avtorjev tega prispevka so
pokazale, da predlagani model PCA-PSO-SVR s pridom izkori{~a prednosti metode strojnega u~enja za neposredno napoved TC,
in tudi zagotavlja teoreti~no podlago za merjenje TC.

Klju~ne besede: temperatura prehoda v superprevodnost TC, strojno u~enje, strukturni in elektronski parametri, PCA-PSO-SVR

1 INTRODUCTION

As important functional materials, high-transition-
temperature (high-TC) superconductors1 have some
typical physical parameters, such as transition tempe-
rature TC, magnetic susceptibility and critical current
density (JC), which make them very useful in many
practical applications like magnetically levitated trains
and power transmission.2–5 Previous researches showed
that the high-TC superconductors are generally characte-
rized by a two-dimensional layered superconducting
condensate with unique features that are not traditional
superconducting metals.6 Their important property, TC, is
determined by their layered crystals, bond lengths,
valency properties of the ions, and Coulomb coupling

between electronic bands in adjacent, spatially separated
layers.7 The optimal TC can be attained upon doping with
other external materials or applying pressure for the
optimal high-TC superconducting compounds.8 There is
an algebraic relation for the optimal TC of the optimal
compounds:7,9

TCO = KB
–1�/(��) (1)

Here, � is related to the mean spacing between in-
teracting charges in the layers, � is the distance between
interacting electronic layers, KB is Boltzmann’s constant,
� is a universal constant and TCO is the optimal transition
temperature.

Formula (1) is a good way to predict the TCO of opti-
mal high-TC superconducting compounds. However,
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non-optimum compounds, in which sample degradation
is evident, typically show that TC is smaller than TC0.7 In
other words, it is critical to predict TC of various high-TC

superconducting compounds. In our present work, we
developed a prediction model based on a machine-learn-
ing method to predict TC of various high-TC super-
conducting compounds using structural and electronic
parameters. The results of the prediction model show
that the model can predict TC quickly and accurately.

Recently, in order to accelerate the process of dis-
covery and deployment of new materials, more and more
researchers have used machine-learning methods to find
new materials, classify them and predict their proper-
ties.10–13 For high-TC superconductors and their TC,
researchers developed a computational-intelligence-
based model via SVR14 to estimate the TC of YBCO
superconductors using lattice parameters as the des-
criptors15–17 and manually found the optimal parameters
of SVR one by one with the trend charts of the effects of
the parameters on the experimental results. It is a very
feasible way to estimate the TC of YBCO supercon-
ductors, but the manual parameter optimization may take
a lot of time.

In this paper, in order to predict TC of various high-TC

superconductors, we established a PCA-PSO-SVR mo-
del based on a machine-learning method using structural
and electronic parameters. These parameters, including �
(the distance between interacting electronic layers), A
(the distance between interacting electronic layers), d
(the periodicity), 	 (the number of type II layers), v (the
number of type I layers), � (the fractional charge per
type I layer) and � (the factor for calculating �), related
to 31 kinds of high-TC superconductors that form the
dataset from the literature.7,9 The dataset has only 31
samples and each sample has only 7 features, which is
obviously a small sample set, but the SVR shows many
unique advantages of processing small sample sets
because of the theory of statistical learning and the
minimum principle of structural risk. Hence, we chose
the SVR as the regression algorithm of the prediction
model. To achieve a higher performance of the model,
we adopted automatic optimization with a simple and
efficient PSO18 optimization algorithm instead of the
manual optimization used in the previous studies when
searching for the optimal SVR parameters. Meanwhile,
we found that some parameters are interdependent by
analysing the crystal structure and parameters of the
high-TC superconductors, so we used PCA19 to reduce
dimensions and interdependencies in the data pre-pro-
cessing for a better accuracy of the prediction model. In
addition, we also trained the PSO-SVR model and the
back-propagation neural network (BPNN)20 with the
dataset for comparison. The corresponding experimental
results showed that the PCA-PSO-SVR prediction model
is more accurate when predicting TC. Meanwhile, we
used additional data to validate the prediction model, and
the results were also reasonable. It means that this

prediction model, based on the machine-learning me-
thod, can directly predict TC.

2 ESTABLISHMENT OF THE PREDICTION
MODEL

In order to identify the feasibility and validity of the
new model, 31 kinds of high-TC superconductors, includ-
ing cuprates, ruthenates, ruthenocuprates, iron pnictides
and organics, whose TC values are in a range of [10.5,
145], were selected from the literature7 as the dataset.
These materials are independent of the locations of two
carrier types, of which type I is defined with the
BaO-CuO-BaO (or equivalent) layers and type II is de-
fined with the cuprate-plane CuO2-Y-BuO2 (or equiva-
lent) layers. The details of the dataset were presented in
the Data.docx file. In the process of establishing the
prediction model, the structural (�, A, d, 	, v) and
electronic (�, �) parameters were scaled to [0,1] with the
min-max normalization, and taken as the input vectors,
while TC was the output value for the regression. Given
that the parameters are interdependent (e.g., � is related
to �, and � is a part of d according to the definition of
these two parameters), we used the widely applicable
PCA method to reduce the dimensions and interdepend-
encies of the parameters. In the PCA process, first, the
covariance matrix of the dataset is calculated, then the
eigenvalues of the covariance matrix are calculated, and
finally the top d eigenvalue of all the eigenvalues is
selected, while the corresponding feature vectors form
the solution of the PCA. The selected reduced dimen-
sions are based not only on the contribution rate that can
be calculated with Equation (2) but also on the errors of
the predicted results of the PCA-PSO-SVR model.
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Here, �i denotes the ith eigenvalue, n denotes the
chosen dimension amount and m denotes the entire
dimension amount.

Detailed results of the dimension reduction are
discussed in the next section. After reducing the
dimensions, the dataset was divided into two parts via
the leave-one-out cross-validation (LOOCV)21 method.
30 samples were used to train the model and the last one
was used to validate the model. Because the dataset was
a small sample set and the parameters were nonlinear, we
chose SVR as the regression algorithm and a radial basis
function (RBF)22 as the kernel function. In the parameter
optimization of SVR, the insensitive loss coefficient #
was empirically set as 0.05, and the penalty coefficient C
and the width coefficient � could be optimized with PSO.
After searching for the optimal parameters, the corres-
ponding SVR was optimal and the PCA-PSO-SVR
prediction model was established as well.
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3 RESULTS AND DISCUSSION

During the data pre-processing, we adopted the PCA
to process the dataset for reducing the dimensions and
interdependencies among the parameters. In order to
select the optimal reduced dimensions, the calculated
eigenvalues of the covariance matrix of the parameters
and the corresponding contribution rates C were sorted
and listed in Tables 1 and 2. From Table 2 and Figure 1,
we can see that with an increase in the reduced dimen-
sions from 1 to 7, the contribution rates also increase.
There is a significant improvement from 3 dimensions to
4 dimensions, that is, the contribution rate of 4
dimensions reaches 96.23 % while the contribution rate
of 3 dimensions reaches 89.57 %. Meanwhile, when the
number of reduced dimensions is more than 4, the
contribution rate is close to 100 %, which means that the
loss rate is close to 0. Generally speaking, when the con-
tribution rate is over 95 %, the corresponding reduced
dimensions of the parameters can represent the original
parameters well. In addition, we also made a holistic
performance analysis of the impact of the dimensions
after adopting the PCA for the proposed model.

Different reduced dimensions from 1 to 7 were used
to train and establish the PCA-PSO-SVR prediction
model, and every sample of the dataset was used to test
each model and obtain the predicted values. Although we
do not show those specific predicted values of each sam-
ple, we show the mean absolute error (MAE) and root

mean square error (RMSE) of the proposed model, with
the dimensionality varying from 1 to 7 in Figure 2.
When the dimensionality gradually increases to 4, the
MAE and RMSE decrease. However, when the dimen-
sionality is bigger than 4, the MAE and RMSE are larger
than in the case of the dimensionality being 4. In other
words, both MAE and RMSE are minimal when the
dimensionality is 4. The reason why 4 dimensions are
the best according to the PCA can be explained as
follows: when the number of reduced dimensions is
smaller than 4, the corresponding contribution rate is
lower than 90 %. Therefore, it loses too much informa-
tion hidden in the original dataset and the result is
certainly not accurate. When the number of reduced
dimensions is over 4, though the contribution rate is ob-
viously higher than that of 4-dimension, more parame-
ters mean more noise and interference. Thus, 4-dimen-
sional parameters were selected for the regression
process based on the comprehensive result analysis of
the contribution rate and errors.

In addition to trianing and validating the
PCA-PSO-SVR model with the processed dataset, we
trained and validated the PSO-SVR and BPNN model
with the oringinal dataset. The predicted TC of each
sample obtained with three different models is shown in
Figure 3; the specific values listed in the Data.docx file
and the corresponding absolute errors are also presented.
It can be seen that many sample points deviate from the
standard line in Figure 3a; in other words, the absolute
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Figure 2: MAE and RMSE of the proposed model with dimension-
ality from 1 to 7

Figure 1: Loss rate and contribution rate of the dimensionality from 1
to 7

Table 1: Eigenvalues of the covariance matrix after sorting

Number �1 �2 �3 �4 �5 �6 �7

Eigenvalue 0.4257 0.1207 0.0743 0.0462 0.0197 0.0047 0.0017

Table 2: Contribution rates of the dimensions from 1 to 7

Dimension 1 2 3 4 5 6 7
Contribution rate 0.6143 0.7885 0.8957 0.9623 0.9907 0.9976 1.0000



errors of the samples predicted with BPNN are so large
that this prediction model is not suitable. Comparing
Figure 3b with Figure 3c, more sample points are pre-
sented with the PCA-PSO-SVR model and they are
closer to the standard line than the sample points of the
PSO-SVR model. Specifically, the accuracy of 19/31
samples obtained with PCA-PSO-SVR is better than that
of PSO-SVR; especially for the leftmost sample point,
the absolute error dropped from 30 K to 8 K. Based on
the singularity of the leftmost sample point, we can say
that it is the only organic superconductor that is very
different from the others in the dataset and the values of
some of its parameters are much bigger than those of the
corresponding parameters of the other samples, leading
to a big prediction error. Because of the data pre-pro-
cessing with PCA, the influence of the parameters with
large values on the predicted results becomes smaller
after projection, so the corresponding absolute error
dropped a lot. Meanwhile, we can also see that the fit
line of PCA-PSO-SVR is closer to 1 than the other two
fit lines, which means that its accuracy is better. The per-
formance of each model can also be analysed statistically
as shown with Table 3, which includes MAE, the mean
absolute percentage error (MAPE), RMSE and the corre-
lation coefficient (R). It can be found that the PCA-
PSO-SVR index is the best in all three models, being
5.34 K, 11.85 %, 6.54 k and 0.9843, respectively. Based
on the above analysis, the proposed PCA-PS0-SVR
model is very suitable to predict the TC for the dataset.

We added seven Ax(S)yTiNCl compound high-TC

superconductors,22 which had structural characteristics
similar to those of the preceding dataset. By reading and
analysing the literature, we extracted the required data,
included in the Data.docx file. We used the new data to
validate the proposed PCA-PSO-SVR prediction model,
and the corresponding predicted values and MAE are
included in Table 4. Very small MAEs were found for
four of the seven samples. Compared with the previous
predicted results of the developing prediction model, the
current predicted results for all the samples are
reasonable. In other words, the PCA-PSO-SVR predic-
tion model exhibited a good accuracy for the above
additional data.

4 CONCLUSIONS

In this paper, we provided a PCA-PSO-SVR model
for predicting TC from structural and correlative electro-
nic parameters of high-TC superconductors. SVR was
adopted to deal with the dataset, which was a small
sample set, and the PSO algorithm was utilized to search
for its optimal parameters to achieve a good perfor-
mance. The PCA was employed to reduce dimensions
and interdependencies between the parameters, and the
selected optimal dimensions of the parameters were
subsequently utilized in PSO-SVR to train and validate
the regression model. In addition, we also trained a
PSO-SVR model without the PCA and BPNN, with the
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Figure 3: a), b) and c) show the correlation between the measured TC and TC predicted by BPNN, PSO-SVR and PCA-PSO-SVR, respectively.
31 kinds of high-TC superconductors were used with three different methods to predict TC, represented by circles, up-triangles and down-triangles
in every subfigure; the black dashed line represents the corresponding fit line and the red solid line is the standard line. The slope of the fit line
was used to determine the performance of the corresponding method, and the three fit-line slopes are 0.832, 0.909 and 0.947, respectively.

Table 3: Comparison of the prediction performance of BPNN, PSO-SVR and PCA-PSO-SVR

methods MAE/K MAPE/% RMSE/K R
BPNN 10.59 23.46 % 16.44 0.8972

PSO-SVR 6.15 12.56 % 8.23 0.9745
PCA-PSO-SVR 5.34 11.85 % 6.54 0.9843

Table 4: Measured TC, the TC predicted with the PCA-PSO-SVR and the corresponding absolute error

No 1 2 3 4 5 6 7
Measured TC/K 18.0 10.2 6.3 6.9 17.0 16.0 9.5
Predicted TC/K 22.6697 10.2721 6.7415 6.5941 21.6752 21.1690 9.9879

MAE/K 4.6697 0.0721 0.4415 0.3059 4.6752 5.1690 0.4879



dataset used for comparison. According to the assess-
ment results and comparison, the PCA-PSO-SVR model
provided a better accuracy of prediction than the other
models for the dataset, and the corresponding MAE was
5.34 k. At last, additional data was used to validate the
prediction, and the results were also reasonable. In a
word, machine-learning methods can be applied to some
domains of materials and the PCA-PSO-SVR ensemble
method may be used to predict the TC of new high-TC

superconductors.
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