# RAZPAD $\alpha$ -AIB<sub>12</sub> V ZLITINAH AI-B IN AI-TI-B

## DECOMPOSITION OF α-AIB12 IN AI-B AND AI-TI-B ALLOYS

FRANC ZUPANI<sup>1</sup>, S. SPAI]<sup>2</sup>, A. KRI@MAN<sup>1</sup>

<sup>1</sup>Univerza v Mariboru, Fakulteta za strojni{tvo, Smetanova 17, 2000 Maribor <sup>2</sup>Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, Oddelek za materiale in metalurgijo, A{ker-eva 12, 1000 Ljubljana

Prejem rokopisa - received: 1997-10-01; sprejem za objavo - accepted for publication: 1997-12-19

V tem delu smo ugotovili, da faza  $\alpha$ -AlB<sub>12</sub> ne razpade pri ohlajanju zlitin Al-B in Al-Ti-B z dvofaznega podro-ja talina +  $\alpha$ -AlB<sub>12</sub> o ziroma s trofaznega podro-ja talina +  $\alpha$ -AlB<sub>12</sub> + TiB<sub>2</sub> do sobne temperature. Razpade {ele pri izotermnem 'arjenju zlitin pod ~900°C, ~eprav bi po podatkih iz dostopne literature morala razpasti 'e pod 980°C. Razpad faze  $\alpha$ -AlB<sub>12</sub> poteka z raztapljanjem  $\alpha$ -AlB<sub>12</sub> in rastjo AlB<sub>2</sub>. Kinetika razpada je hitrej{a v ternarnih zlitinah Al-Ti-B kot v binarnih Al-B, ker faza TiB<sub>2</sub> olaj{a nastanek reakcijskega produkta AlB<sub>2</sub>.

Klju~ne besede: Al-B, Al-Ti-B, α-AlB<sub>12</sub>, AlB<sub>2</sub>, peritekti~na reakcija, prehodna reakcija

In this work it was found out that decomposition of the high-temperature phase  $\alpha$ -AlB<sub>12</sub> doesn't occur during cooling of the Al-B and Al-Ti-B alloys from the two-phase region L + AlB<sub>12</sub> or the three-phase region L +  $\alpha$ -AlB<sub>12</sub> + TiB<sub>2</sub>. It decomposes only in the course of isothermal annealing under ~900°C. According to data in the open literature its decomposition should start already under 980°C. The decomposition of  $\alpha$ -AlB<sub>12</sub> takes place by dissolution of  $\alpha$ -AlB<sub>12</sub> and growth of AlB<sub>2</sub>. The decomposition rate is higher in ternary Al-Ti-B than in binary Al-B alloys, because TiB<sub>2</sub> phase promotes the nucleation of the reaction product AlB<sub>2</sub>. Key words: Al-B, Al-Ti-B,  $\alpha$ -AlB<sub>12</sub>, AlB<sub>2</sub>, peritectic reaction, transition reaction

## 1 UVOD

Faza  $\alpha$ -AlB<sub>12</sub> ima {tevilne zanimive lastnosti, kot so visoka trdota (> 2000 HV), majhna gostota ( $\rho$  = 2,54 g/cm<sup>3</sup>), kemijska odpornost in polprevodni{ke lastnosti<sup>1</sup>. Predvsem zaradi visoke trdote in majhne gostote je primerna za uporabo v kompozitih z aluminijevo osnovo<sup>2</sup>, saj povzro~a disperzijsko utrjevanje ter pove~a obstojnost mehanskih lastnosti pri povi{anih temperaturah in obrabno odpornost.

Faza  $\alpha$ -AlB<sub>12</sub> je visokotemperaturna; po najnovej{ih literaturnih podatkih<sup>3</sup> je v sistemu Al-B termodinamsko stabilna nad 980°C. Pod to temperaturo naj bi peritekti~no razpadla v AlB<sub>2</sub>, vendar je pogosto prisotna tudi v zlitinah, ki so ohlajene s temperatur nad 980°C do sobne temperature z zmerno hitrostjo. Pri pregledu dostopne literature je bilo ugotovljeno, da o mehanizmu in kinetiki njenega razpada v teko~em in trdnem stanju ni nobenih podatkov. Ti podatki so gotovo potrebni tako pri na~rtovanju in-situ sinteze kompozitov v teko~em stanju kot tudi pri uporabi kompozitov pri povi{anih temperaturah.

#### 2 EKSPERIMENTALNO DELO

Pri raziskavi razpada faze  $\alpha$ -AlB<sub>12</sub> je bilo uporabljenih ve~ zlitin: AlB3 proizvajalca Kawecki Billiton (2,96% B, 0,15% Fe, 0,05% Si), AlB1 proizvajalca Alusuice (1,1% B, 0,1% Fe, 0,02% Si), elektrooblo~no izdelana zlitina AlB9Ti1 in lastni aluminotermi~no sintetizirani zlitini AlB1 z 1,05% B ter AlTi3,14B2,85.

KOVINE, ZLITINE, TEHNOLOGIJE 32 (1998) 1-2

Nekatere zlitine so bile preiskane z diferen-no termi-no analizo (DTA), ki je bila izvedena s segrevalno in ohlajevalno hitrostjo 10°C/min med 500 in 1400°C v argonski atmosferi na napravi Bähr Thermoanalyse GmbH. Izotermno 'arjenje zlitin je potekalo do 70 ur pri temperaturah 650, 750, 850, 870, 890, 905, 940, 960 in 1000°C. Vzorci so bili nato metalografsko pripravljeni, preiskani s svetlobno (Nikon) in elektronsko mikroskopijo (JSM Jeol 840 A) ter analizo EDS (Link Analytical), kakor tudi z rentgensko fazno analizo (rentgenski pra{kasti difraktometer Philips PW 1710).

#### **3 REZULTATI IN DISKUSIJA**

Mikrostrukture izhodnih zlitin AI-B in AI-Ti-B so podane na **sliki 1**. Zlitina AIB3 je v izhodnem stanju sestavljena iz aluminijeve osnove in majhnih, do 10  $\mu$ m velikih delcev  $\alpha$ -AIB<sub>12</sub>, ki so ve-inoma nepravilnih oblik (**slika 1a**). Zlitina AIB1 se je ve-inoma uporabljala za dolo-anje temperature peritekti-ne reakcije, zato je bila najprej 'arjena 250 ur pri 750°C, da so delci AIB<sub>2</sub> zrasli do velikosti nekaj 100  $\mu$ m (**slika 1b**). Rezultati rentgenske difrakcije in analize EDS so pokazali, da sta zlitini AI-Ti-B sestavljeni iz faz  $\alpha$ -AI,  $\alpha$ -AIB<sub>12</sub>, TiB<sub>2</sub> in AIB<sub>2</sub>; njuna mikrostruktura je prikazana na **slikah 1c,d**.

Na ohlajevalnih krivuljah, ki smo jih dobili pri DTA zlitin Al-B in Al-Ti-B, nismo v zanimivem temperaturnem obmo-ju (850°C do 1000°C) opazili nobenega vrha, ki bi zanesljivo nakazoval pri~etek peritekti~ne reakcije, ali temperaturo, pod katero je termodinamsko stabilna faza AIB<sub>2</sub>. Na osnovi mikrostrukturne analize preiskanih zlitin smo ugotovili dva razloga, zakaj se vrh



a) AIB3 (SM), b) AIB1 (SM), c) AITi3,1B2,9 (REM), d) AIB9Ti1 (REM), 12:  $\alpha$ -AIB<sub>12</sub>; 2: AIB<sub>2</sub>; 3: TiB<sub>2</sub> **Slika 1:** Mikrostrukture zlitin AI-B in AI-Ti-B v izhodnem stanju a) AIB3 (LM); b) AIB1 (LM); c) AITi3,1B2,9 (SEM); d) AIB9Ti1 (SEM); 12:  $\alpha$ -AIB<sub>12</sub>; 2: AIB<sub>2</sub>; 3: TiB<sub>2</sub> **Sliku 1:** Mikrostrukture zlitin AI-B in AI-Ti-B v izhodnem stanju

Figure 1: Microstructures of AI-B and AI-Ti-B alloys in the as-received condition

ni pojavil: (1) visokotemperaturna faza  $\alpha$ -AlB<sub>12</sub> pri ohlajanju sploh ni razpadla in (2) koli~ina faze AlB<sub>2</sub>, ki je nastala v preostali talini med delci AlB<sub>2</sub>, je bila zelo majhna, tako da se pri njenem nastanku ni sprostilo zadosti toplote.

Pri dolo-evanju peritekti-ne temperature v sistemu AI-B z izotermnim 'arjenjem je bila uporabljena zlitina AIB1 (slika 1b), ki vsebuje velike delce AIB<sub>2</sub>, saj so predhodne raziskave pokazale, da peritekti~na reakcija AIB<sub>2</sub> 4 L<sub>P</sub> +  $\alpha$ -AIB<sub>12</sub> poteka mnogo hitreje v nakazani kot v obratni smeri ( $L_P$  je ravnote' na sestava taline pri peritekti~ni reakciji). Po sedemdeseturnem 'arjenju pri temperaturah pod 900°C so v zlitini AIB1 prisotni le delci AIB<sub>2</sub> v ga{eni mikrostrukturi. Velikost in pogostost delcev AIB<sub>2</sub> se pri pribli' evanju temperaturi 900°C manj{a, ker se vedno ve~ji dele' faze AIB<sub>2</sub> raztopi zaradi ve~anja topnosti bora v aluminiju z nara{~anjem temperature (slika 2a). Med 'arjenjem nad 900°C se ves preostali AIB<sub>2</sub> transformira v α-AIB<sub>12</sub>, posamezni delci visokotemperaturne faze  $\alpha$ -AIB<sub>12</sub> pa prese'ejo velikost 100 µm (slika 2b). S temi raziskavami smo ugotovili, da je temperatura peritekti~ne reakcije v zlitinah AI-B pri 900 6 5°C. To je pri ~80°C ni' ji temperaturi, kot je objavljeno v Binary alloy phase diagrams<sup>3</sup>. Zaradi velike razlike med obema temperaturama bomo pri na{em nadaljnjem delu posku{ali odkriti vzroke za tolik{no odstopanje.

So~asno z izotermnim 'arjenjem zlitin AI-B je potekalo tudi 'arjenje zlitine AITi3,14B2,85. Rezultati so pokazali, da med sedemdeseturnim 'arjenjem pod temperaturo 900°C prakti~no ves α-AIB<sub>12</sub> razpade predvsem v AIB<sub>2</sub> (slika 2c). Pri 'arjenju pri temperaturah nad 900°C se faza  $\alpha$ -AIB<sub>12</sub> ne transformira, opazimo lahko le rahlo pove~anje velikosti delcev  $\alpha$ -AlB<sub>12</sub> (slika 2d). To ka'e, da tudi v ternarni zlitini Al-Ti-B faza  $\alpha$ -AlB<sub>12</sub> razpade {ele pod temperaturo 900°C tako kot v binarni zlitini AI-B in da prisotnost titana ne vpliva na temperaturo reakcije. To ni presenetljivo, saj je znano, da je topnostni produkt (Ti)(B)<sup>2</sup> pri temperaturah okoli 900°C zelo majhen<sup>4</sup>. V zlitinah AlTi3,14B2,85 in AlB9Ti1 je v talini pri temperaturah blizu temperature peritekti~ne reakcije raztopljena skoraj enaka koli~ina bora kot v binarni zlitini - to je okoli 1 m.%. Skladno s topnostnim produktom, ki ga je dolo~il Sigworth<sup>4</sup>, je vsebnost titana v talini le 10<sup>-6</sup> m.% ali {e mani, saj je ves preostali titan vezan v izredno stabilen titanov diborid. Prisotnost TiB<sub>2</sub>,

KOVINE, ZLITINE, TEHNOLOGIJE 32 (1998) 1-2



a) AIB1, 875°C; b) AIB1, 901°C; c) AITi3,1B2,9, 875°C; d) AITi3,1B2,9, 901°C; 12: α-AIB<sub>12</sub>; 2: AIB<sub>2</sub> **Slika 2:** Svetlobni mikroposnetki zlitin AI-B in AI-Ti-B po sedemdeseturnem izotermnem 'arjenju pri razli~nih temperaturah **Figure 2:** Optical micrographs of the alloys AI-B and AI-Ti-B after 70 h isothermal annealing at different temperatures

ki ima enak tip kristalne zgradbe kot AIB<sub>2</sub> in tudi zelo podobne mre' ne parametre<sup>5</sup>, ne vpliva na temperaturo reakcije, pospe{i le razpad faze  $\alpha$ -AIB<sub>12</sub> pri temperaturah pod 900°C, saj olaj{a nastanek faze AIB<sub>2</sub>. Razpad faze  $\alpha$ -AIB<sub>2</sub> lahko v ternarnem sistemu pote~e s ternarno peritekti~no ali prehodno reakcijo. V prej{njem delu<sup>6</sup> smo ugotovili, da je prehodna reakcija:  $\alpha$ -AIB<sub>12</sub> + L 4 AIB<sub>2</sub> + TiB<sub>2</sub> skladnej{a z dosedanjimi eksperimentalnimi rezultati in termodinamskimi lastnostmi faz v zlitini Al-Ti-B.

Na **sliki 3** so prikazane mikrostrukture zlitin Al-B in Al-Ti-B po sedemdeseturnem 'arjenju pri razli~nih temperaturah.

Pri 'arjenju binarne zlitine Al-B pri 650°C razpada faza  $\alpha$ -AlB<sub>12</sub> zelo po-asi. Kot je razvidno s **slike 3a** je velikost delcev  $\alpha$ -AlB<sub>12</sub> skoraj enaka kot v izhodnem stanju **(slika 1a)**. Le poredkoma so opazni delci AlB<sub>2</sub>, ki nastanejo in rastejo v  $\alpha$ -Al v podro-jih med delci  $\alpha$ -AlB<sub>12</sub>. Za razliko se v ternarni zlitini Al-Ti-B pri istih pogojih 'arjenja transformira 'e okoli 50%  $\alpha$ -AlB<sub>12</sub>. S **slike 3b** lahko razberemo, da je nastalo zelo veliko {tevilo delcev AlB<sub>2</sub> in da so najve-ji tisti, ki se dotikajo delcev  $\alpha$ -AlB<sub>12</sub>. Delci TiB<sub>2</sub>, ki so prisotni v tej zlitini,

KOVINE, ZLITINE, TEHNOLOGIJE 32 (1998) 1-2

o-itno olaj{ajo nastanek AIB<sub>2</sub> in tako mo-no pospe{ijo reakcijo.

Pri razpadu faze  $\alpha$ -AIB<sub>12</sub> ob prisotnosti taline imata za~etna velikost in oblika delcev  $\alpha$ -AIB<sub>12</sub> velik vpliv na potek reakcije tako v binarni kot ternarni zlitini. Kadar so v talini prisotni majhni delci  $\alpha$ -AIB<sub>12</sub>, rastejo praviloma fasetirani delci AIB<sub>2</sub> navidezno neodvisno od delcev  $\alpha$ -AIB<sub>12</sub>. Le poredko se zgodi, da rasto~i delci AIB<sub>2</sub> zajamejo neraztopljene delce  $\alpha$ -AIB<sub>12</sub>. Hitrost reakcije je ponovno mnogo ve~ja v ternarni zlitini AI-Ti-B, saj se po sedemdeseturnem 'arjenju transformira ~80% faze  $\alpha$ -AIB<sub>12</sub>, medtem ko v binarni zlitini ta dele' ne dose' e niti 30%. S **slik 3c,d** je tudi razvidno, da je {tevilo nastalih delcev AIB<sub>2</sub> mnogo ve~je v ternarni kot v binarni zlitini.

Kadar so v zlitini prisotni veliki fasetirani delci  $\alpha$ -AlB<sub>12</sub>, potem delci AlB<sub>2</sub> nastajajo na fasetah  $\alpha$ -AlB<sub>12</sub> ali pa se na njih pritrjujejo s trki. Delci AlB<sub>2</sub> rastejo v prednostnih smereh - njihova rast je obi~ajno najhitrej{a vzporedno z bazalno ravnino (0001) - zato posamezni kristaliti AlB<sub>2</sub> niso sposobni popolnoma obdati kristalov  $\alpha$ -AlB<sub>12</sub>. Tako se med reakcijo pove~uje {tevilo delcev AlB<sub>2</sub>, ki so v tesnem stiku s posameznimi delci  $\alpha$ -AlB<sub>12</sub>.



a) AIB3 (SM), b) AITi3,1B2,9 (SM), c) AIB3 (SM), d) AITi3,1B2,9 (SM), e) AIB1 (SM) in f) AIB9Ti1 (REM) **Slika 3:** Razpad faze  $\alpha$ -AIB<sub>12</sub> v a,b) pri 650°C in pri 800°C ob prisotnosti c,d) majhnih in e,f) velikih delcev AIB<sub>12</sub> a) AIB3 (LM), b) AITi3,1B2,9 (LM), c) AIB3 (LM), d) AITi3,1B2,9 (LM), e) AIB1 (LM) and f) AIB9Ti1 (SEM) **Figure 3:** Decomposition  $\alpha$ -AIB<sub>12</sub> in a,b) at 650°C and at 800°C at the presence of c,d) small and e,f) great AIB<sub>12</sub> particles

Tudi raztapljanje delcev  $\alpha$ -AlB<sub>12</sub> poteka v prednostnih smereh; to je na **sliki 3f** posebej ozna-eno s pu{~ico. S **slik 3e,f** lahko tudi razberemo, da je kar precej{en dele' faze  $\alpha$ -AlB<sub>12</sub> vra{-en v AlB<sub>2</sub>. Za popolno izginotje faze  $\alpha$ -AlB<sub>12</sub> so potrebni zelo dolgi ~asi, ker je za njeno nadaljnjo raztapljanje potrebna difuzija v trdnem stanju.

Eksperimentalni rezultati nakazujejo, da poteka razpad faze  $\alpha$ -AIB<sub>12</sub> pri temperaturah, ko je faza AIB<sub>2</sub> termodinamsko stabilnej{a od faze  $\alpha$ -AIB<sub>12</sub>, v dveh stopnjah: (1) nastanek nizkotemperaturne faze AIB<sub>2</sub> in

(2) rast AIB<sub>2</sub> in raztapljanje  $\alpha$ -AIB<sub>12</sub>. V ve~ini preiskovanih zlitin so delci AIB<sub>2</sub> prisotni 'e v izhodni mikrostrukturi. Nastanejo med ohlajanjem pri izlo~anju iz preostale taline med delci  $\alpha$ -AIB<sub>12</sub> ali pa pri zaklju~ni evtekti~ni reakciji. Ker faza  $\alpha$ -AIB<sub>12</sub> ne olaj{a nastanka fazi AIB<sub>2</sub>, se tvori med ohlajanjem kot tudi med izotermnim 'arjenjem zlitin AI-B le malo delcev AIB<sub>2</sub>, zato je kinetika reakcije po~asna. Za razliko je {tevilo delcev AIB<sub>2</sub> v zlitini AI-Ti-B mnogo ve~je, saj se je faza TiB<sub>2</sub> izkazala kot primerno mesto za njihov nastanek.

KOVINE, ZLITINE, TEHNOLOGIJE 32 (1998) 1-2

Ko sta v zlitini prisotni obe fazi, se  $\alpha$ -AlB<sub>12</sub> raztaplja, AIB<sub>2</sub> pa raste. Gonilna sila izhaja iz razlike v koncentraciji bora na fazni meji L/α-AIB<sub>12</sub> in na fazni meji L/AIB<sub>2</sub> (pri temperaturi 650°C sta borida v ravnote' ju z  $\alpha$ -Al in ne s talino L). Ker je v preiskovanih zlitinah pri temperaturah pod 900°C faza α-AIB<sub>12</sub> termodinamsko manj stabilna kot AIB<sub>2</sub><sup>7</sup>, vsebuje talina (ali  $\alpha$ -Al) v ravnote' ju z metastabilno fazo α-AIB<sub>12</sub> ve~jo koli~ino bora kot v ravnote' ju s stabilno fazo AIB<sub>2</sub>. Med delci  $\alpha$ -AIB<sub>12</sub> in AIB<sub>2</sub> nastane koncentracijski gradient. Atomi bora difundirajo s fazne meje  $L/\alpha$ -AIB<sub>12</sub>, kjer je njihova koncentracija najve~ja, proti delcem AIB<sub>2</sub>. Difuzijski tok bora od faze  $\alpha$ -AIB<sub>12</sub> proti AIB<sub>2</sub> zmanj{a njegovo koncentracijo na fazni meji  $\alpha$ -AIB<sub>12</sub>/L pod ravnote' no vrednost in povzro~i nadaljnje raztapljanje faze α-AIB<sub>12</sub>. Difuzijski tok bora je v prvem pribli'ku sorazmeren njegovemu koncentracijskemu gradientu, zato se kinetika reakcije pospe{i, ~e so delci AlB<sub>2</sub> zelo blizu ali celo v tesnem stiku z delci  $\alpha$ -AlB<sub>12</sub>. Vendar sorazmerno po~asno raztapljanje faze α-AIB<sub>12</sub> ka'e, da ta proces ni odvisen samo od difuzije bora, temve~ tudi od hitrosti prehoda atomov preko fazne meje  $L/\alpha$ -AIB<sub>12</sub>. Relativno po~asno raztapljanje faze α-AIB<sub>12</sub> v prednostnih smereh ima svoje korenine v visoki talilni entropiji te faze v aluminijevi talini (~47 J/mol K<sup>7</sup>). Tudi talilna entropija faze AIB<sub>2</sub> je zelo velika (~41 J/mol K<sup>7</sup>), zato tudi ta raste v prednostnih smereh. Zaradi prednostne rasti v dolo~enih smereh faza AIB2 ni sposobna tudi v primeru, ko je v tesnem stiku z  $\alpha$ -AIB<sub>12</sub>, rasti vzdol' meje L/ $\alpha$ -AIB<sub>12</sub> in popolnoma obdati posamezen delec α-AIB<sub>12</sub>, zato lahko na neprekritih fasetah  $\alpha$ -AIB<sub>12</sub> nastajajo novi delci AIB<sub>2</sub>.

#### 4 SKLEPI

Iz rezultatov tega dela izhajajo naslednji sklepi:

 Faza α-AIB<sub>12</sub> ne razpade pri ohlajanju zlitin AI-B in AI-Ti-B s temperatur nad 900°C do sobne temperature. Nizkotemperaturna faza AIB<sub>2</sub> se tvori v preostali talini; njena pogostost je ve~ja pri hitrej{em ohlajevanju, kakor tudi v zlitinah AI-Ti-B, kjer prisotni delci TiB<sub>2</sub> olaj{ajo njen nastanek.

- V zlitinah Al-B in Al-Ti-B razpade faza α-AlB<sub>12</sub> pri izotermnem 'arjenju pod temperaturo 900°C; to je pri 80°C ni'ji temperaturi, kot je objavljena v dostopni literaturi.
- Razpad faze α-AIB<sub>12</sub> poteka z raztapljanjem faze α-AIB<sub>12</sub> in rastjo AIB<sub>2</sub>. Obe fazi se raztapljata oziroma rasteta v prednostnih smereh zaradi njune velike talilne entropije.
- 4. Na mehanizem in kinetiko reakcije vplivajo temperatura, sestava in stanje zlitine, velikost in morfologija delcev α-AIB<sub>12</sub> ter prisotnost prednostnih mest za nastanek AIB<sub>2</sub>. Pri vseh preizkusnih pogojih se je pokazalo, da je razpad faze α-AIB<sub>12</sub> vedno hitrej{i v ternarni kot v binarni zlitini. ^eprav lahko pri~akujemo ve~ji utrjevalni u~inek v ternarnih zlitinah zaradi dodatnega disperzijskega utrjanja z delci TiB<sub>2</sub>, pa je razpad faze α-AIB<sub>12</sub> precej hitrej{i, zato je uporaba tovrstnih kompozitov primernej{a le pri ni'jih temperaturah.

### ZAHVALA

Franc Zupani~ se zahvaljujem Rektorjevemu skladu Univerze v Maribor za pomembno finan~no pomo~ pri izvedbi tega dela.

#### **5 LITERATURA**

- <sup>1</sup> R. K. Chuzko, V. A. Neronov: Synthesis and properties of aluminium borides, *Inorganic Materials*, 31 (1995) 8, 1043-1047
- <sup>2</sup>K. Nishiyama et al.: Journal of Japan Society of Powder and Powder Metallurgy, 41 (1995) 162-165
- <sup>3</sup>T. B. Massalski: Binary alloy phase diagrams, 1990, 123-125
- <sup>4</sup>G. K. Sigworth: The grain refining of aluminium and phase retationships in the AI-Ti-B System, *Metallurgical Transactions A*, 18A (1984) 277-282
- <sup>5</sup>U. K. Stoltz, F. Sommer, B. Predel: Phase equilibria of aluminiumrich Al-Ti-B alloys - solubility of TiB<sub>2</sub> in aluminium melts, *Aluminium*, 71 (1995) 3, 350-355
- <sup>6</sup> F. Zupani~, S. Spai}, A. Kri' man: Contribution to the AI-Ti-B ternary system, Part II: Study of alloys in the triangle AI-AIB<sub>2</sub>-TiB<sub>2</sub>, *sprejem za objavo v Materials Science and Technology* 12. 1. 1998
- <sup>7</sup> I. Barin: Thermochemical Data of Pure Substances, second edition, 1993, VCH Verlagsgessellschaft mbH, Weinheim