VPLIV GRADNJE VEČVARKOVNEGA ZVARA NA ŽILAVOST

EFFECT OF MULTI-PASS WELD BUILD-UP ON WELD-METAL TOUGHNESS

Danilo Rojko, Vladimir Gliha

Fakulteta za strojništvo, Univerza v Mariboru, Smetanova 17, 2000 Maribor, Slovenija danilo.rojko@uni-mb.si

Prejem rokopisa - received: 2001-11-15; sprejem za objavo - accepted for publication: 2001-12-24

V pričujočem delu smo z uporabo simulatorja termičnega cikla SMITWELD analizirali vpliv termičnega varilnega cikla na nastanek mikrostruktur v varu in njihovo udarno žilavost. S simulatorjem termičnega varilnega cikla je mogoče enostavno reproducirati mikrostrukture toplotno vplivanega področja (TVP) in materiala vara, pa tudi izločilne pojave, ki so posledica delovanja termičnega cikla.

V ta namen smo uporabili kot osnovo varek-izhodni material, ki je bil izdelan z varjenjem pod praškom (EPP), na katerega smo aplicirali nadaljnje termične cikle z različnimi maksimalnimi temperaturami. Tako smo v laboratorijskih razmerah simulirali izoblikovanje mikrostruktur ter vpliv termičnega cikla na udarno žilavost in nastanek lokalno krhkih področij (LKP).

Ključne besede: zvarni spoj, mehanske heterogenosti, simulacija, termično varilni cikel, udarna žilavost, krhka področja

In this study the influence of a weld's thermal cycle on the microstructures and the impact toughness of the weld metal are experimentally analysed. For this purpose we used the SMITWELD simulator for the thermal cycle. With a simulator for the thermal cycle it is possible to simply reproduce the microstructures of a heat-affected zone (HAZ) and the microstructures of the weld metal. Also, it is possible to simulate the segregation process as part of the weld's thermal cycle.

For this purpose a different thermal cycle with a different peak temperature on a real single-pass weld joint produced by submerge arc welding (SAW) was used. With this experimental work the simulation of the effect of weld build-up on the weld-metal toughness and the formation of a local brittle zone (LBZ) in laboratory conditions was performed.

Key words: weld joint, mechanical heterogeneity, weld thermal cycle, impact toughness, brittle zones

1 UVOD

Mehanska in metalurška heterogenost je zaradi delovanja termičnega in deformacijskega cikla med varjenjem spremljevalec vsakega zvarnega spoja. Med varjenjem se zaradi termičnega varilnega cikla v varu in toplotno vplivanem področju (TVP) izoblikujejo različne mikrostrukture¹. Te vplivajo na žilavost zvarnega spoja. Varjenje lahko vodi k zniževanju žilavostnih lastnosti zvarnega spoja, še posebej v področju grobega zrna toplotno vplivanega področja (GZ TVP), kot tudi samega vara². Zlasti lokalna krha področja (LKP) so povezana s termičnim varilnim ciklom in se pojavljajo na področju vara in TVP. Na njihov nastanek vplivajo kemična sestava osnovnega in dodajnega materiala, varilni parametri in gradnja varkov. Zaradi slabe žilavosti teh področij in nevarnosti pojava krhkega loma so to najšibkejši členi obremenjenih zvarnih spojev 3.

Zanesljivost zvarnih spojev je v veliki meri odvisna od strukturnih značilnosti LKP. Na to pa lahko vplivamo s primerno gradnjo varkov.

V predstavljenem delu smo v laboratorijskih razmerah simulirali izoblikovanje različnih mikrostruktur v zvarnem spoju. Zato smo uporabili enovarkovni realni varek-izhodni material, na katerega smo aplicirali nadaljnje termične cikle. Analizirali smo vpliv najvišje temperature termičnega cikla na udarno žilavost in

MATERIALI IN TEHNOLOGIJE 36 (2002) 5

nastanek različnih mikrostruktur v materialu vara, zlasti lokalno krhkih področij (LKP).

2 MATERIAL, ZVARNI SPOJ

2.1 Osnovni in dodajni material

Pri eksperimentalnem delu smo uporabili visokotrdnostno konstrukcijsko jeklo NIOMOL 490K, ki jo proizvaja ACRONI Jesenice. To jeklo ima feritno-bainitno mikrostrukturo, drobno zrno in dobro žilavost pri nizkih temperaturah. V **tabelah 1 in 2** so prikazane kemična sestava in mehanske lastnosti jekla.

Za izdelavo zvarnega spoja smo uporabili polnjeno stržensko žico FILTUB 128 premera 4 mm ter varilni prašek FBTT ⁴. Kemična sestava in mehanske lastnosti dodajnega materiala so prikazane v **tabelah 3 in 4**, kemična sestava varilnega praška pa je podana v **tabeli 5**.

2.2 Izdelava zvarnega spoja

Na pločevini debeline 25 mm smo izdelali zvarni žleb oblike "V" in globine 10 mm. Žleb smo zapolnili z enim varkom, izdelanim po postopku varjenja EPP. Da bi dosegli zadovoljive mehanske lastnosti in ponovljivost izvedbe varjenja, smo med varjenjem merili čas ohlajanja materiala vara $\Delta t_{8/5}$, ki je bil 13,2 s. Za merjenje

D. ROJKO, V. GLIHA: VPLIV GRADNJE VEČVARKOVNEGA ZVARA NA ŽILAVOST

Tabela 1: Kemična sestava jekla NIOMOL 490K	
Table 1: Chemical composition of steel NIOMOL 490k	ζ

Kemični element	C	Si	Mn	Р	S	Al	Cr
Atest (%)	0,10	0,42	0,52	0,005	0,001	0,034	0,53

 Tabela 2: Mehanske lastnosti jekla NIOMOL 490K

 Table 2: Mechanical properties of steel NIOMOL 490 K

	R _{p0,2} (MPa)	R _m (MPa)	A5 (%)	Udarna žilavost pri -60 °C (J)
Zahteve	≥470	560-750	≥19	120
Atest	522	621	38,5	280, 271, 294

 Tabela 3: Kemična sestava dodajnih materialov

 Table 3: Chemical composition of all weld metal

Dodajni material	C	Si	Mn	Р	S	Mo	Ni
FILTUB 128	0,05	0,20	1,40	-	-	0,40	1,2

 Tabela 4: Mehanske lastnosti dodajnega materiala

 Table 4: Mechanical properties of all weld metal

Dodajni material	R _{p0,2} (MPa)	R _m (MPa)	A ₅ (%)
FILTUB 128	>550	630-730	>20

 Tabela 5: Kemična sestava varilnega praška FB TT

 Table 5: Chemical composition of flux FBTT

	Si+MgO	CaO+MgO	Al2+MnO	CaF ₂	
	(%)	(%)	(%)	(%)	
FB TT	15	40	20	25	

Slika 1: Izrez preizkušancev iz zvarnega spoja Figure 1: Cut out of specimens from weld joint

časa $\Delta t_{8/5}$ smo uporabili termočlen Cr-NiCr, ki smo ga med varjenjem potisnili v talino vara, neposredno za gibajočim se oblokom.

Varjenje se je izvajalo brez predgrevanja varilnega etalona oziroma pri sobni temperaturi.

2.3 Izdelava preizkušancev

Iz zvarnega etalona smo izdelali preizkušance dimenzije 9x9x55 mm. Ti so bili iz zvarnega etalona debeline 25 mm odvzeti tako, da je varek potekal preko celotne debeline preizkušanca. **Slika 1** prikazuje odvzem preizkušancev iz zvarnega spoja. Na preizkušancih dimenzije 9x9x55 mm smo nato aplicirali nadaljnje termične cikle. Po končani simulaciji termičnih ciklov

Slika 2: Potek termičnih varilnih ciklov z različnimi najvišjimi temperaturami

Figure 2: Termination of weld thermal cycles with different peak temperatures

Slika 3: Porazdelitev trdot v varu v smeri debeline preizkušancev Figure 3: Distribution of hardness in weld metal in the thickness direction

smo iz teh preizkušancev izdelali Charpyjeve žilavostne epruvete dimenzije 8x8x55 mm. Mehanska zareza je potekala v materialu vara v smeri njegove debeline.

3 REZULTATI

Raziskave so bile izvedene na realnem enovarkovnem varu kot izhodnem materialu in na realnih varih, na katere smo aplicirali nadaljnje termične cikle z različnimi najvišjimi temperaturami, ki so bile dosežene z uporovnim segrevanjem vzorcev materiala (slika 2). Temperaturo vzorcev materiala med simulacijo smo merili z termočlenom Cr-NiCr, ki smo ga točkovno privarili na sredino ene od daljših stranic vzorca.

Slika 4: Udarna žilavost simuliranih struktur Figure 4: Impact toughness of simulated structures

Slika 5: Primerjava udarne žilavosti simuliranih struktur pri -30 °C Figure 5: Comparison of the impact-toughness value of simulated structures at -30 °C

Slika 3 prikazuje izmerjene trdote v varu v smeri debeline preizkušanca. Posamezne točke v diagramu pomenijo eno izmerjeno vrednost trdote HV1 in potekajo enakomerno na razdalji 1 mm v smeri debeline preizkušanca.

Udarno žilavost smo določili po standardu ASTM E 23-96 ⁵. Meritve so potekale v temperaturnem območju -80 °C in +40 °C. Rezultati udarne žilavosti za navedena temperaturna območja so prikazani na **sliki 4**. Primerjava udarne žilavosti pri -30 °C pa nam prikazuje diagram na **sliki 5**.

Po določitvi udarne žilavosti realnega vara kot izhodnega materiala in simuliranih struktur so bili izdelani metalografski obrusi področij, neposredno ob

Slika 6: Metalografski posnetek mikrostrukture poligonalnega ferita, izločenega na mejah kristalnega zrna, ki je nastala zaradi delovanja simuliranega termičnega cikla z najvišjo temperaturo 1350 °C na realni var

Figure 6: Metallographic shot of polygonal ferrite and grain-boundary ferrite cause by exoposure of a real weld metal to a simulation thermal cycle with a peak temperature of 1350 °C (specimen C6)

Slika 7: Vpliv termičnega cikla z najvišjo temperaturo 1100 °C na realni var je povzročil nastanek mikrostrukture z poligonalnimi zrni ferita (preizkušanec C5).

Figure 7: Exposure of real weld metal to a simulation thermal cycle with a peak temperature of 1100 °C causes the formation of polygonal ferrite (specimen C5)

Slika 8: Nastanek M-A konstituentov zaradi vpliva termičnega varilnega cikla z najvišjo temperaturo 780 °C na realni var (preizkušanec C2)

Figure 8: Exposure of real weld metal to a simulation thermal cycle with a peak temperature of 780 $^{\circ}$ C causes the formation of M-A constituent (specimen C2)

MATERIALI IN TEHNOLOGIJE 36 (2002) 5

D. ROJKO, V. GLIHA: VPLIV GRADNJE VEČVARKOVNEGA ZVARA NA ŽILAVOST

liniji širjenja loma med udarnim preizkusom. Metalografske posnetke teh področij prikazujejo **slike 6, 7 in 8**.

4 DISKUSIJA REZULTATOV

Porazdelitev trdot v smeri debeline vara nam pove, da so bile najvišje izmerjene trdote posledica delovanja simulacijskih termičnih ciklov z najvišjima temperaturama 1350 °C in 780 °C. Zlasti pri slednjem imamo zaradi neenakomernega ohlajanja vara v smeri debeline v korenu in temenu vara trdotne konice.

Po pričakovanju so trdote najnižje pri simulacijskem termičnem ciklu z najvišjo temperaturo 980 °C. Popolna transformacija $\alpha \rightarrow \gamma$ je povzročila nastanek finozrnate strukture z zelo dobro žilavostjo. Spreminjanje trdot pa je posledica karbidov in karbonitridov, ki se zaradi nizkih temperatur niso raztopili v avstenitu.

Izmerjene trdote v smeri debeline vara pri simulacijskih ciklih z najvišjima temperaturami 700 °C in 1100 °C se medsebojno veliko ne razlikujejo in so primerljive z izmerjenimi trdotami izhodnega materiala-realnega enovarkovnega vara.

Rezultati udarne žilavosti kažejo, da ima najvišjo udarno žilavost izhodni material z feritno-perlitno mikrostrukturo. Primerjava udarne žilavosti simuliranih struktur pri -30 °C na sliki 4 pa kaže, da ima najvišjo udarno žilavost mikrostruktura, ki je nastala kot posledica delovanja simulacijskega termičnega cikla z najvišjo temperaturo 1350 °C (slika 7). Kljub poligonalnem feritu in feritu, izločenim na mejah zrn, je prisotnost acikularnega ferita omogočila dobro žilavost. Majhen padec žilavosti najdemo tudi pri strukturi, ki je bila dobljena pri delovanju termičnega cikla z najvišjo temperaturo 1100 °C. Mikrostrukturo sestavljajo poligonalna zrna ferita in je prikazana na sliki 6. Najnižjo udarno žilavost pa ima struktura, ki je nastala pri delovanju simulacijskega termičnega cikla z najvišjo temperaturo 780 °C. Mikrostruktura tega področja je prikazana na sliki 5. Padec udarne žilavosti je poledica nastanka poligonalnega ferita in martenzita med ohlajanjem.

5 SKLEP

Rezultati udarne žilavosti kažejo, da imajo najnižjo žilavost strukture, ki so nastale kot posledica delovanja simulacijskega termičnega cikla z najvišjo temperaturo 780 °C na izhodni material-realni enovarkovni var. Kot prikazujejo metalografski posnetki obstaja nevarnost nastanka trdih struktur (martenzita) in s tem krhkega loma.

Strukture, ki so bile dobljene s simulacijskim termičnim ciklom z najvišjo temperaturo 980 °C kažejo v primerjavi z drugimi strukturami nizke vrednosti trdot, ki pa se ne izražajo v višji udarni žilavosti. Iz izmerjenih trdot ni mogoče napovedati najnižje ali najvišje udarne žilavosti posameznih struktur.

Iz rezultatov raziskav je razvidno, da je treba večjo pozornost nameniti mikrostrukturam, ki nastanejo v temperaturnemu območju 780 °C, in primerni gradnji varkov.

6 LITERATURA

- ¹ F. Matsuda, Y. Fukada, H. Okada, C. Shiga, K. Ikeuchi, Y. Horii, T. Shiwaku, S. Suzuki (Japan): Rewiew of mechanical and metallurgical investigations of maretnsite austenite constituente in welded joints in Japan, Welding in the World, 37 (**1996**), 3, ISSN 0043-2288
- ² M. Toyoda, F. Minami: Evaluation procedure of structural raliability of weldments based on CTOD results, Osaka University, Faculty of Engineering Osaka, Japan, The American Society of Mechanical Engineers; Book No. I0285C-1989, March 1989
- ³ F. Minami, M. Toyoda, K. Satoh: Probalistic Analysis of Fracture Touhness of Weld HAZ with LBZ, Transactions of the Japan Welding Society, 19 (1988), 2, IIW Doc.X-1158-88
- ⁴ Welding consumables, SŽ Elektrode Jesenice, Jesenice 1998
- ⁵ ASTM Designation E 23-96: Standard Test Method for Notched Bar Impact Testing of Metallic Materials, Philadelphia, 1996