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This article describes the modelling of the operating characteristics of a cold-cathode ionisation gauge (CCG) using neural
networks. The gauge characteristics were measured on a gauge-comparison UHV calibration system with a test chamber, an
extractor gauge, a spinning rotor gauge, and a gas manifold with a variable leak valve. The discharge intensity was measured vs.
the anode voltage at different pressures, selected in the range from 1·10-9 mbar to 1·10-5 mbar, and vs. pressure at different
operating voltages ranging from 1.2 kV to 9 kV. In all cases the magnetic field density was the same and amounted to about
0.13 T.
The CCG discharge current versus pressure characteristic is non-linear and in some cases even discontinuous. In our previous
studies we found that neural networks are a very suitable tool for modelling the CCG input-output characteristics. Since CCGs
are considered to be coarse vacuum gauges, modelling results with the maximum relative error within a 25 % limit are quite
acceptable.
Our further research of modelling introduces the pre-processing of the measured data, where the originally measured data set is
replaced with a filtered data set. The filtered CCG characteristics were used as an input for the artificial neural network, which
was used to generate the non-linear CCG input -output function used for the linearisation purposes.
The neural networks were trained to perform the transfer function between the filtered input gauge parameters and the pressure.
The modelling results were tested a separate, independent set of measured points.
Keywords: cold-cathode ionisation gauge, neural networks, linearisation, approximation, modelling.

V ~lanku opisujemo modeliranje karakteristik ionizacijskega vakuumskega merilnika s hladno katodo (CCG) z nevronskimi
sistemi. Karakteristike merilnika so bile izmerjene na primerjalnem ultra visoko-vakuumskem sistemu, ki ga sestavljajo:
preskusna komora, ekstraktorski merilnik, viskoznostni merilnik z lebde~o kroglico in plinski razdelilni sistem z dozirnim
ventilom. Razelektritveni tok ionizacijskega merilnika v odvisnosti od anodne napetosti smo merili pri razli~nem tlaku, ki smo
ga spreminjali od 1·10-9 mbar do 1·10-5 mbar, in v odsvisnosti od tlaka pri razli~ni delovni napetosti, ki smo jo spreminjali od 1,2
kV do 9 kV. Gostota magnetnega polja je bila pri vseh meritvah enaka, in sicer 0,13 T.
Odvisnost med razelektritvenim tokom v CCG in tlakom v notranjosti merilnika je nelinearna, ponekod je celo nezvezna. V
na{ih predhodnih {tudijah smo ugotovili, da so nevronski sistemi zelo primerno orodje za modeliranje karakteristik CCG
merilnika. Ionizacijski merilniki s hladno katodo spadajo v skupino manj natan~nih merilnikov tlaka, zato so rezultati, ki smo
jih dobili z modeliranjem karakteristik in ki omogo~ajo modeliranje z najve~jo relativno napako pod 25 %, prakti~no uporabni
in sprejemljivi.
Relativno napako modeliranja smo `eleli zmanj{ati, zato smo pred modeliranjem uvedli {e postopek filtriranja merjenih
podatkov. Filtrirane podatke meritev smo nato uporabili kot vhodne podatke za nevronski sistem, ki se je tako nau~il ustvariti
vhodno - izhodne karakteristike CCG-merilnika. Kvaliteto dobljenega modeliranja smo ovrednotili na mno`ici neodvisno
merjenih podatkov ionizacijskega merilnika.
Klju~ne besede: ionizacijski merilnik s hladno katodo, nevronski sistemi, linearizacija, modeliranje

1 INTRODUCTION

In our previous work we focused our attention on
modelling the CCG characteristics using neural networks
1,2. The results showed that neural networks can be used
to produce the non-linear transformation between the
CCG discharge current and the pressure inside the
vacuum chamber. We found that such a simulation of
CCG characteristics allows a simulation relative error of
up to 25 % 2. Although such errors are practically
acceptable we wanted to minimize it as much as
possible. During our previous experiments, the learning
of the neural network was carried out on the original
measured data points. Since these data points contain

measurement errors, we decided to filter the data. The
filtered data were then used as the learning data set for
the neural network. In such a way we tried to minimize
the simulation error.

Real measurements of the inverted magnetron were
the starting point for this study. Measured characteristics
(Figure 1) were used to train the multilayer neural
network 1. The model based on the trained neural
network should be capable of producing the CCG input
(pressure, operating voltage)-output (discharge current)
function.

Finally, we wanted to use the neural network to
correct the nonlinearity of the CCG and to enable the
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conversion of the value of the discharge current reading
to the actual vacuum-chamber pressure.

1.1 Cold-cathode ionisation gauge

The inverted magnetron is, together with the Penning
and normal magnetron, a member of the cold-cathode
ionization-gauges group. CCGs are intended for
measurements of pressure in the range from 10-12 mbar to
10-2 mbar 3.

Cold-cathode ionisation gauges are very robust
devices with low electrical power consumption, high
sensitivity, and they operate without a hot filament. They
are relatively cheap devices 4, commonly used as
more-or-less relative pressure gauges in vacuum
systems. CCGs exhibit an extremely low thermal
outgassing rate, they are free from x-ray and
electron-stimulated desorption errors. The disadvantages
of CCGs are: stray magnetic fields, relatively high
pumping speed and non-linear characteristics. The major
CCG drawback is the nonlinear relationship between the
discharge current and the pressure. The relationship
between discharge current and pressure is, in some cases,
even discontinuous. In the absence of any starting device
this delay may be considerable.

The nonlinear but continuous portion of a CCG
discharge current vs. pressure characteristic may be
piecewise fitted to a power-law equation 5:

I=kpn (1)

The corresponding discharge intensity vs. pressure
characteristic can be presented as:

I/p = kp(n-1) (2)

where I is the gauge discharge current, and n and k are
constants. The departure from linearity is not great.
Values of n found in the literature usually fall between
1,05 and 1,2 5. The constant k is dependent on the
magnetic and electric field, the length of the discharge
cell and the type of gas in the vacuum chamber, while
the constant n is dependent on the magnetic field
density, the operating voltage and the diameter of the
discharge cell.

1.2 Neural networks as a general modelling tool

We wanted to find out whether it is possible to model
the characteristics of a CCG using a neural network. Our
goal was to produce a numerical model of the
cold-cathode ionisation gauge, based on a relatively
small set of measured points. We intended to use the
formed model of the CCG to optimise the fabrication
process as well as an aid for using the CCG in
measurements. It is important that the numerical model
covers the complete usable pressure range of the CCG.

The simulation process started with measurements of
the CCG characteristics. The measured data points were
not measured equidistantly. The number of the measured
points is a necessary trade-off between the density of
measured points and the time used to execute the
measurements. The neural networks consist of artificial
neural cells organised in layers.

Two of the layers are always obvious and are named
by their function as the input and output layer,
respectively. The number of neurons in the input (in our
case, discharge current and operating voltage) and the
output layer (pressure, sensitivity) depends on the
dimensionality of the problem1. Additionally, there is a
number of hidden-layer neurons. They are very
important and they contribute significantly to the
building of the input-output transformation. The most
important feature of the neural networks is their ability
to learn the input-output relationship from the set of data
called the training set. Once the neural network is
properly trained, it generates the input-output characte-
ristic for any given input-data pattern 6,7.

It is known from the literature 8, that neural networks
are capable of learning, and finally reproducing, almost
any kind of mathematical function that is in the form of a
countable set of representing points.

It was proven that any non-polynomial type of
input-output function can be achieved using a neural
network with only one hidden layer of neurons 9.
Although it is theoretically possible, it is a matter of the
practical application that limits the use of this principle.
Practically, it means that there always exists a neural
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Figure 1: The measurements of a CCG characteristics are presented in
68 points at four different pressure values. The measured data set is
used as the training set for the neural network.
Slika 1: Meritve karakteristik CCG so narejene v 68 to~kah pri {tirih
razli~nih vrednostih tlaka. Izmerjene podatke smo uporabili kot u~no
mno`ico za u~enje nevronskega sistema.

1 To avoid confusion it is necessary to clear the relative nature of the terms input and output. When speaking of a CCG, the input parameters are
the vacuum-chamber pressure, the operating voltage between the cathode and the anode and the magnetic field density. Since the magnetic field
remains constant, it can be omitted in our study. The CCG output is the discharge current. When speaking of the neural network, the input
parameters become the CCG discharge current, and the operating voltage, while the output parameter becomes the pressure in the vacuum
chamber. For clarification, please refer to Figure 3.



network with one hidden layer to produce the required
input-output transfer function, but the problem is how
this theoretically existing function can be found and
realised. In our experience it is a far better solution to
take neural networks with more than one hidden layer.

We have also found in the literature 10 that the
input-output characteristics of neural networks can, in
some cases, become discontinuous. Therefore, we tested
a generated network for discontinuities.

During the training process, the input samples are
presented to the neural network. Each sample must have
the desired output value. Each pair of discharge current
and input voltage is followed by the measured pressure
detected inside the calibration vacuum chamber. The
cycles, when all the input samples together with the
appropriate output values are presented to the neural
network, are called epochs. The learning is done over
many epochs, and the overall error of the learned
input-output relationship compared to the desired output
should decrease. The training process is convergent
when the output error decreases with an increasing
number of epochs 6,7.

When the neural network is properly trained, the
CCG characteristic is modelled for any point within the
limits of the input data space. The neural networks are
trained to simultaneously produce the pressure and
sensitivity planes.

The training process of the neural network consists of
the following steps:

• The measured values of the discharge current and the
applied voltage are presented to the neural network
input.

• For each input pattern the desired output values for
the pressure and the sensitivity are applied on a
special “training” input.

• The neural network calculates the error between the
values of pressure and sensitivity obtained by the
network and those applied on the “training” input.

• According to the calculated output error, the artificial
neural cells parameters (weights, thresholds) are
changed in order to lower the output error. This
process is called learning.

• The complete set of the measured input patterns
together with the desired output values are presented
to the network in a cycle called an epoch.

• The network learns the input-output relationship in a
series of epochs. The number of epochs is limited by
the error produced by the neural network (present at
the start of the training process).
Basically, there are two different ways of using the

measured data - uncorrected or filtered. In our first
experiments the original data set was used. The results of
the modelling showed quite substantial relative errors.
The other choice is to filter the measured data prior to
the learning process. The filtering was obtained by
classical non-linear curve-fitting (data-fitting) in the
least-square sense. That is, giving the data (1) P
(measured pressures), the observed output I, we wanted

to find coefficients k and n that “best fit” equation 1. The
least-square problem can be described by finding the
minimum of the expression

min ( )
k, n i

n

i
ikP I∑ − 2 . (3)

All the measured data was filtered (curve-fitted) and
as such used for the learning process of the neural
network.

2 EXPERIMENTAL

In the inverted-magnetron geometry the anode is
represented by the metallic rod in the axis of a metallic
cylinder, which is the cathode. To achieve the gauge
operating conditions, the CCG was placed in a homo-
geneous magnetic field (a SmCo permanent magnet with
a magnetic field density of about 0.13T), while the
cathode and the anode were connected to a high voltage
of several kV. The magnetic and electric fields are
orthogonal.

The gauge was constructed on a basis of the small
ion-getter pump with a nominal pumping speed of 2 l/s.
The gauge was electrically isolated from the connecting
ConFlat® (CF) flanges by a glass-to-metal seal. The
high-voltage feedthrough was designed to have a very
high electrical breakdown voltage.

Measurements of the CCG characteristics were
obtained using a UHV calibration system, specially
designed for the comparison measurements. The vacuum
system consists of a stainless-steel vacuum chamber with
a volume of about 6 l, a stainless-steel pumping system
and a gas manifold with a precise leak valve. For compa-
rison measurements, an extractor gauge IE514 (HCG
with an x-ray limit below 10-12 mbar), and a spinning
rotor gauge VISCOVAC VM 212 were used for cali-
brations in the range from 10-10 mbar to 10-5 mbar 11,12.

All the measurements were obtained in a nitrogen
atmosphere. The measurements were made at different
pressures of about 10-9 mbar, 10-8 mbar, 10-7 mbar, 10-6

mbar and 10-5 mbar. At a constant pressure, the high
voltage between the cathode and the anode was varied in
the range from 1.2 kV to 9 kV, in 500 V steps.

The evaluation measurements were taken at 4.5 kV.

3 RESULTS AND DISCUSSION

In the first part the measured data set was used as the
training set for the neural network. When the neural
network was adequately trained, it was ready to
reproduce the input-output characteristics of the
processed CCG 1.

The used neural network had four layers (two hidden
layers). The training method was the error back-
propagation algorithm. Tests began with one hidden
layer. It is theoretically proven 8 that a neural network
with one hidden layer can perform almost any kind of
input-output mapping. In our case it exhibited very poor
training capabilities. Several different neural networks
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with one hidden layer were tried, but we did not succeed
in finding the right number of neurons in the hidden
layer that would exhibit the convergent (linear decrease
in output error) training process. Tests started with 20
neurons in a hidden layer and were continued until we
reached 100 neurons; unfortunately, without satisfactory
results. We decided to continue testing with two
hidden-layer neural networks. We found experimentally,
that the neural network with 20 neurons in each hidden
layer achieved the modelling process satisfactory.
Taking more neurons in the hidden layer did not improve
the functionality of the network.

Once the training is finished, the neural network is
fixed - its input-output characteristic does not change
any more, it can only reproduce the trained function. In
our case this means that once the CCG properties are
learned, they can be used for any point of the input
space. Practically, for any pair of a measured CCG
discharge current and operating voltage, the neural

network produces a unique value for the pressure and the
sensitivity. This is one of the advantages of using a
neural network rather than prepared lookup tables, where
an additional interpolation is required.

To learn the CCG characteristic, typically from
10000 to 20000 epochs were usually needed.

The results of the modelling show that it is possible
to model the CCG characteristics with the multilayer
neural networks. The neural network is capable of
reproducing the measured input-output function of a
CCG within 0,5 % at each point (on a logarithmic scale).
The input-output function outside the measured points is
smooth, without detected discontinuities, Figure 2.

The simulated input-output characteristics are pre-
sented in 3D mesh plots. For this purpose an equidistant
mesh grid was generated and prepared for the graphical
post-processing. Figure 2 shows the simulation of the
I-V-P characteristics, while Figure 3 shows the I-V-P
characteristics learned on filtered data.

The quality of the simulated CCG characteristic was
evaluated by additional measurements not included in
the learning data set. The CCG characteristic was
measured at a constant operating voltage of 4.5 kV, and
a pressure that varied from 1·10-9 mbar to 1·10-5 mbar.
The relative error between the measured and simulated
pressure was calculated, and the obtained results are
presented in Figure 4. The relative error was calculated
with the equation:

E = (Ps - Pm)/ Pm.100 (%) (4)

Where E is the relative error in the simulation of
pressure, Pm is the measured pressure, and Ps is the
simulated pressure. Although it seems from Figure 4
that the relative error of simulated pressure is quite high,
and reaches 25 % ( the maximum simulation error occurs
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Figure 2: The relationship I-V-P, simulated by the neural network for
the inverted magnetron CCG
Slika 2: Karakteristika I-V-P, ki jo je generiral nevronski sistem na
osnovi merjenih podatkov

Figure 3: The relationship I-V-P on the filtered data set, simulated by
the neural network for the inverted magnetron CCG
Slika 3: Karakteristika I-V-P. Nevronski sistem je generiral
karakteristiko na filtriranih podatkih meritev.
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Figure 4: The neural network simulation relative error calculated on
the evaluation set of separately measured points. One curve represents
the relative simulation error obtained on the intact data while the other
shows the error on the filtered learning data set. In both cases the
evaluation CCG characteristic was measured at a constant operating
voltage of 4.5 kV.
Slika 4: Relativna napaka simulacije karakteristike. Napaka je bila
izra~unana za mno`ico izmerjenih vrednosti, ki niso bile vklju~ene v
proces u~enje nevronskega sistema. Prikazani sta dve krivulji relativne
napake - ena za simulacijo, narejeno na originalnih podatkih, ter dru-
ga, ki je za u~enje nevronskega sistema uporabljala filtrirane podatke.



at the measured pressure: 1.26 10-7 mbar; simulated
pressure: 1.57·10-7 mbar; simulation relative error 24.95
%) the simulation of the CCG characteristic is practically
a very useful solution since CCGs are coarse vacuum
gauges with poor repeatability and a significant
hysteresis effects. Vacuum measurements with CCGs are
typically in the 20 % tolerance range.

The second part includes the data filtering prior to the
learning process. As already mentioned, we wanted to
reduce the relative simulation error. As a result of the
data-fitting process the parameters k and n (1) were
obtained for the different CCG operating voltages. Table
1 shows the calculated parameters.

Table 1: The parameters k and n from the equation 1 for the different
CCG operating voltages
Tabela 1: konstanti k in n, ki nastopata v ena~bi (1) pri razli~nih
napetostih

Operating voltage
(kV)

k n

2,5 O,9130 1,0026
3 1,3866 0,9973
3,5 1,8302 1,0371
4 2,2576 1,0657
4,5 2,7023 1,1448
5 3,0021 1,1127
5,5 3,2945 1,0753
6 3,5140 1,0412
6,5 3,9903 1,0319
7 4,3364 1,0218
7,5 4,9055 1,0398

From the fitted data in Table 1 we can see that the
parameter k varies from 0.9 to 4.9. It is also evident from
Table 1 that the parameter k increases with the operating
voltage. The parameter n also increases, and from 5,5 kV
up it starts to decrease.

The process of the neural network training was the
same as for the case where unfiltered data was used. The
evaluation of the simulation relative error was also the
same. The results show (see Figure 4) that the filtering
process can substantially lower the simulation relative
error. In our experiments the maximum relative
simulation error fell from 25 % to 11 %.

4 CONCLUSIONS

The main goal of our work was to find a way to
model the behaviour of a CCG using neural networks. It
is useful because CCG operation is stable and repeatable.
Special emphasis was given to the selection of the neural
network topology that was used for the modelling
purposes.

The trained neural network can model the
relationship between the CCG discharge current, the
operating voltage and the pressure. It reads the CCG

discharge current and the operating voltage and
estimates the values for the pressure and the sensitivity.
Practically, this means that for any point of the input
data - discharge current and operating voltage the neural
network generated the corresponding pressure.

Tests proved that the neural network is capable of
learning the CCG characteristics with the preset
accuracy. The modelled three-dimensional function is
smooth, without detected discontinuities produced by the
neural network.

The neural networks were trained to simultaneously
produce the pressure and sensitivity planes.

The results of this study introduce the use of neural
networks for the post-processing of measured data. They
proved to be a very promising tool, especially in the
cases where the exact mathematical model is not known
or is not good enough to adequately describe the
behaviour of the observed problem. The neural networks
build the model function in a process called learning.

Another important aspect of the simulation process
with neural networks is the data preparation. In our case
we made two separate tests, one with unchanged,
measured data, and the other with the data fitted to the
given function in the least-square sense. Results proved
that the maximum relative simulation error can decrease
(in our case from 25 % to 11 %) if the measured data is
filtered prior to the neural network learning process.
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