PTKU V SISTEMU KNbO₃ – BaTiO₃

PTCR EFFECT IN KNbO3-BaTiO3 CERAMICS

Irena Pribošič¹, Darko Makovec¹, Miha Drofenik^{1,2}

¹ Institut "Jožef Stefan", Jamova 39, Ljubljana, Slovenija
² Fakulteta za kemijo in kemijsko tehnologijo, Smetanova 17, Maribor, Slovenija irena.pribosic@ijs.si

Prejem rokopisa – received: 2004-10-04; sprejem za objavo – accepted for publication: 2005-02-15

Raziskovali smo efekt pozitivnega temperaturnega koeficienta upornosti (PTKU) v keramiki trdne raztopine med KNbO₃ in BaTiO₃. Vzorci KNbO₃ z dodatkom BaTiO₃ so bili pripravljeni po klasični keramični tehnologiji, tj. s kalcinacijo oksidov in karbonatov. Z dodatkom BaTiO₃ k KNbO₃ se je zmanjšala velikost zrn in povečala gostota. Meritev dielektričnosti v odvisnosti od temperature je pokazala, da se dielektrični maksimum, ki je posledica temperaturnega prehoda iz tetragonalne v kubično strukturo, z dodajnjem BaTiO₃ širi in premika k nižjim temperaturam. Z redukcijo in nadaljnjo reoksidacijo vzorcev smo pripravili keramiko, ki kaže PTKU efekt. Vendar pa po večkratnem segrevanju do 500 °C in ohlajanju vzorcev se le ta zaradi reoksidacije zmanjša.

Ključne besede: ferroelektriki, kalijev niobat, barijev titanat, PTKU

In this study we have investigated the positive temperature coefficient of resistivity (PTCR) effect in a solid solution of the KNbO₃–BaTiO₃ system. The samples of KNbO₃ with additions of BaTiO₃ were prepared by conventional ceramic technology. The addition of the BaTiO₃ to the KNbO₃ decreased the grain size and increased the density of the samples. The temperature of the dielectric-constant maximum of the samples, which is related to the tetragonal-to-cubic phase transition (T_c), decreased with the amount of added BaTiO₃. A reduction and subsequent reoxidation of the samples caused them to exhibit a remarkable PTCR effect; however, after repeated temperature cycling between room temperature and 500°C the PTCR effect degraded.

Key words: ferroelectrics, potassium niobate, barium titanate, PTCR effect

1 UVOD

Donorsko dopiran, polprevoden BaTiO₃ pri prehodu med tetragonalno in kubično strukturo (Curiejeva temperatura, T_{C} = 128 °C) kaže skokovit porast upornosti (pozitivni temperaturni koeficient upornosti - PTKU). PTKU je posledica nastanka temperaturno odvisnih potencialnih pregrad na mejah med zrni, ki nastanejo z adsorpcijo akceptorjev na površini polprevodnih zrn. PTKU pri donorsko dopiranem BaTiO₃ omogoča vsestransko uporabnost PTK-elementov v elektroniki. Uporabljamo jih kot preklopnike pri določeni temperaturi, kot so npr. senzorji ali grelci z lastno regulacijo. Pri BaTiO₃ lahko T_C spreminjamo z raznimi dodatki. Za dvigovanje T_c se uporablja strupen svinec, vendar pa tudi z njegovo uporabo ne moremo preseči 350 °C. S tem je tudi omejena uporaba PTK-elementov. V zadnjem času se zato intenzivno iščejo novi materiali brez svinca, ki bi kazali PTKU pri višji temperaturi in bi jih lahko uporabili za izdelavo visokotemperaturnih PTK-elementov.

KNbO₃ je v marsičem zelo podoben BaTiO₃. Oba sta ferroelektrična materiala, kristalizirata v perovskitni strukturi in imata enak niz faznih prehodov. Razlika je predvsem v temperaturi faznih prehodov. KNbO₃ ima T_C pri 415 °C. Vse to so razlogi, zaradi katerih se nam je KNbO₃ in sistem KNbO₃-BaTiO₃ zdel primeren material za visokotemperaturne PTK-elemente.

Raevnskii s sodelavci^{1,2} je objavil PTKU v polprevodnem KNbO₃ z dodatkom K_2O -GeO₂ stekla. Polprevodnost materiala so dosegli z redukcijo. K_2O -GeO₂-steklo pa se porazdeli na meje med zrni polprevodnega materiala in je tako potencialna pregrada za elektrone. Po Heywangovem modelu³ pa je to vzrok za nastanek PTKU. O sistemu KNbO₃ – BaTiO₃ sta R. J. Bratton in T.Y. Tien⁴ že leta 1967 objavila članek, v katerem navajata obstoj trdne topnosti BaTiO₃ v KNbO₃. V nasprotju z njunima ugotovitvama pa sta pozneje E. Irle in R. Blachnik⁵ objavila fazni diagram, ki na KNbO₃ strani ne kaže trdne topnosti med tema dvema spojinama.

2 EKSPERIMENTALNO DELO

Vzorce s sestavami (1-X) KNbO₃ + X BaTiO₃ (X = 0-10 mol.%) smo pripravili s kalcinacijo stehiometrične mešanice prahov: BaCO₃ (Merck), K₂CO₃ (Alfa, 012609), Nb₂O₃ (Alfa, 011366) in TiO₂ (Bayer, T) pri temperaturi 830 °C 12 ur. BaCO₃ smo zaradi njegove higroskopnosti pred uporabo 2 uri sušili na temperaturi 200 °C. Kalciniran prah smo stisnili v 2 mm debele tablete premera 6 mm in jih sintrali na zraku pri različnih temperaturah od 1055 °C do 1140 °C. Temperaturo, pri kateri smo dosegli najvišjo gostoto, smo vzeli kot optimalno temperatura sintranja za določeno sestavo. Optimalna temperatura sintranja narašča z višanjem koncentracije BaTiO₃ v vzorcu. Za vse sestave pa je značilen zelo ozek temperaturni interval sintranja.

I. PRIBOŠIČ ET AL.: PTKU V SISTEMU KNbO3 – BaTiO3

Za meritev električnih lastnosti smo sintrane tablete na obeh straneh namazali z indij/galijevim evtektikom. Merilnik impendance Hewlett-Packard, model 4192A LF, smo uporabili za meritev impedančnega spektera v območju od 5 Hz do 13 MHz in dielektrične konstante pri frekvenci 1 MHz, merilnik Hewlett-Packard, model 3457A, pa za meritve upornosti v odvisnosti od temperature.

Vzorci so bili analizirani z uporabo vrstičnega (SEM) JEOL 5800 in presevnega elektronskega mikroskopa (TEM) JEOL 2010F, oba opremljena z analizatorjem LINK ISIS EDS 300. Kvantitativne analize EDS-spektrov so bile narejene s programsko opremo Oxford ISIS in uporabo knjižnice virtualnih standardov.

3 REZULTATI IN DISKUSIJA

Po sintranju na zraku je bila upornost vseh vzorcev nad $10^8 \Omega$ cm. Dodatek BaTiO₃ k KNbO₃ je močno vplival na mikrostrukturo in sintranje materiala. S sintranjem pri 1055 °C smo dosegli maksimalno gostoto KNbO₃, ki je bila 83 % teoretične gostote. Po 2-urnem sintranju pri tej temperaturi so zrna v materialu zrasla do povprečne vrednosti 2,5 µm. Z dodatkom BaTiO₃ k KNbO₃ se je optimalna temperatura sintranja dvignila, močno se je povečala dosežena gostota, hkrati pa je bila zavrta rast zrn. Podatki so zbrani v **tabeli 1**. Površini preloma nedopiranega KNbO₃ in KNbO₃ z dodatkom 1 mol.% BaTiO₃ sta prikazani na **sliki 1**.

Tabela 1: Optimalne temperature sintranja, delež dosežene teoretične gostote v odstotkih in povprečna velikost zrn po 2-urnem sintranju pri optimalni temperaturi za različne dodatke BaTiO₃ k KNbO₃.

Table 1: Optimal sintering temperature, achieved sintered density and average grain size for the different compositions of the samples sintered for 2 hours at the optimal temperature.

	$T_{opt.}$ / °C	TD / %	<i>d /</i> µm
KNbO ₃	1055	83	2,5
0,5 mol.% BaTiO ₃	1080	84	0,5
1 mol.% BaTiO ₃	1115	85	0,4
3 mol.% BaTiO ₃	1140	98	0,3
6 mol.% BaTiO ₃	1140	92	0,3
10 mol.% BaTiO ₃	1140	92	0,3

Zaradi zelo majhnih zrn pri vzorcih z dodanim BaTiO3 smo za mikroanalizo posameznih zrn uporabili presevni elektronski mikroskop. Slika 2a prikazuje zrna v vzorcu z 10 mol.% dodanega BaTiO3 sintranega 2 uri na temperaturi 1125 °C. Z EDS-analizo (slika 2b) smo ugotovili, da vzorec vsebuje dve različni perovskitni fazi. Med zrni matrične faze, trdna raztopina, bogata z $KNbO_3$ (K_{1-x}Ba_xNb_{1-x}Ti_xO₃), se nahajajo posamezna raztopine, bogate zrna trdne Ζ BaTiO₃ $(Ba_{1-X}K_{X}Ti_{1-X}Nb_{X}O_{3})$. Vsebnost BaTiO₃ v matričnih zrnih je zelo nehomogeno porazdeljena in se giblje od 3 do 10 mol.% BaTiO₃. Formiranje trdne raztopine na KNbO3 strani kvazi binarnega sistema KNbO3 - BaTiO3

Slika 1: Površina preloma a) KNbO₃, sintran 2 uri na temperaturi 1055 °C in b) KNbO₃ z dodatkom 1 mol.% BaTiO₃, sintran 2 uri na temperaturi 1115 °C

Figure 1: Fracture surface of the a) undoped KNbO₃, sintered for 2 hours at $1055^{\circ}C$ and b) KNbO₃ with the addition of 1 mol.%, BaTiO₃, sintered for 2 hours at $1115^{\circ}C$

Slika 2: (a) Mikrostruktura in (b) EDS-spekter matričnega zrna v vzorcu z 90 mol.% KNbO₃ in 10 mol.% BaTiO₃, sintrano 2 uri pri temperaturi 1125 °C. Posneto s presevnim elektronskim mikroskopom.

Figure 2: (a) TEM micrograph and (b) EDXS spectrum taken from matrix grain in the sample of KNbO₃ with the addition of 10 mol.% BaTiO₃, sintered for 2 hours at $1125^{\circ}C$

Slika 3: Temperaturna odvisnost dielektrične konstante ε_r za KNbO₃ in KNbO₃ z različnim molskim deležem dodanega BaTiO₃. Vzorci so bili sintrani pri optimalni temperaturi sintranja, s katero dosežemo maksimalno gostoto za vsako sestavo (**tabela 1**).

Figure 3: Temperature dependence of dielectric constant for undoped KNbO₃ and KNbO₃ with different additions of BaTiO₃. Each sample was sintered at its optimum temperature resulting in the highest density (**Table 1**).

pa potrjuje ugotovitve, ki sta jih objavila Bratton in Tien⁴.

Z meritvijo temperaturne odvisnosti dielektrične konstante, smo potrdili obstoj trdne topnosti med KNbO₃ in BaTiO₃ na strani KNbO₃. Prehod iz ene v drugo kristalno strukturo se izraža kot maksimum dielektrične konstante pri tej temperaturi. **Slika 3** prikazuje temperaturno odvisnost relativne dielektrične konstante, merjene pri frekvenci 1MHz, za vzorce z različnimi dodatki BaTiO₃, sintrane 2 uri pri optimalni temperaturi

Shka 4: Reingenska praskovna analiza vzorcev s sestavo 2 molskim deležem od 0 do 6 % BaTiO₃ v KNbO₃. Vzorci so bili sintrani pri optimalni temperaturi sintranja za posamezno sestavo (tabela 1). Figure 4: X-ray diffractogram patterns for undoped KNbO₃, and KNbO₃ with different additions of BaTiO₃. Each sample was sintered at its optimum temperature (Table 1).

sintranja za posamezno sestavo. Vzorec KNbO₃ ima pri sobni temperaturi dielektrično konstanto $\varepsilon_r \approx 450$. Meritev v odvisnosti od temperature pokaže dva posamezna vrha, ki ustrezata prehodu iz ortorombske v tetragonalno (225 °C) ter iz tetragonalne v kubično strukturo (Curiejeva temperatura, 415 °C). Iz diagrama je razvidno, da se maksimum, ki je odvisen od Curiejeve temperature, z dodatkom BaTiO₃ k KNbO₃ premakne k nižjim temperaturam, in vrh se razširi. Premik Curiejeve temperature kaže na vgradnjo Ba in Ti v perovskitno strukturo KNbO₃. Pri vzorcih s 6 in 10 mol.% dodanega BaTiO₃ je viden le en širok vrh pri nižji temperaturi, kar je verjetno posledica dejstva, da na dielektrično konstanto dodatno vpliva prisotnost z BaTiO₃ bogate faze.

Slika 4 prikazuje rentgenske praškovne posnetke vzorcev z različnimi koncentracijami dodanega BaTiO₃. KNbO₃ ima pri sobni temperaturi ortorombsko strukturo, kar lahko razberemo tudi iz rentgenske analize vzorca KNbO₃, sintranega pri 1055 °C 2 uri. Z dodajanjem BaTiO₃ k KNbO₃ se simetrija osnovne celice povečuje, kar se vidi iz združevanja posameznih vrhov v enega. Struktura se spreminja iz ortorombske v tetragonalno, kar zopet potrjuje nastanek trdne raztopine med KNbO₃ in BaTiO₃ na niobatni strani kvazi binarnega sistema.

Po Heywangovem modelu³ nastane PTKU v polikristaliničnem materialu s polprevodnimi (n-tipa) ferroelektričnimi zrni ter potencialnimi pregradami na mejah med zrni. Iz literature⁶ je znano, da lahko s primerno reoksidacijo vnesemo potencialne pregrade na meje med zrna atmosfersko reduciranega nedopiranega BaTiO₃ in tako dobimo PTKU. Da bi zagotovili polprevodnost zrn, smo na zraku žgane tablete reducirali v atmosferi 10 % H₂ – 90 % Ar 1 uro pri temperaturi

Slika 5: Impedančna spektroskopija KNbO₃ z dodatkom 1,25 mol.% BaTiO₃ po 10-minutni reoksidaciji pri različnih temperaturah
Figure 5: Impedance spectroscopy of the KNbO₃ with 1.25 mol.% BaTiO₃ ceramic as a function of reoxidation temperature

MATERIALI IN TEHNOLOGIJE 39 (2005) 1-2

Slika 6: Specifična upornost v odvisnosti od temperature za KNbO₃ z dodatkom BaTiO₃ od 0 do 10 mol.%. Na zraku sintrani vzorci so bili reducirani 1 uro pri temperaturi 1000 °C v atmosferi 90 % Ar – 10 % H₂ in nato reoksidirani na zraku 10 minut pri temperaturi 900 °C. Figure 6: Temperature dependence of resistivity of KNbO₃ ceramics with different additions of BaTiO₃. Air-sintered samples were reduced by annealing at 1000°C in 90 % Ar – 10 % H₂ gas mixture and subsequently reoxidised by annealing in air for 10 minutes at 900°C.

1000 °C. Polprevodne vzorce smo nato reoksidirali pri različnih temperaturah. Iskali smo pogoje, pri katerih se reoksidirajo samo meje med zrni, sama zrna pa ostanejo polprevodna.

Po redukciji je električna upornost vzorcev z dodanim BaTiO₃ padla iz izolatorskega v polprevodno območje na red velikosti nekaj deset ohm-centimetrov. Upornost KNbO₃ brez dodanega BaTiO₃ pa je padla le na 20 k Ω cm. Iz KNbO₃-keramike, ki vsebuje dodatek BaTiO₃, se v redukcijski atmosferi kisik laže sprosti iz perovskitne strukture, ker so Ti⁺⁴-ioni manj stabilni in se hitreje reducirajo v Ti⁺³ kot Nb⁺⁵ v Nb⁺⁴.

Redukciji, s katero smo dosegli polprevodnost zrn, je sledila delna reoksidacija, ki naj bi na meje med zrna vnesla potencialno pregrado. Na **sliki 5** je prikazana impedančna spektroskopija KNbO₃ z dodatkom 1,25 mol.% BaTiO₃ po 10-minutni reoksidaciji pri različnih temperaturah. Meritev je bila izvedena v frekvenčnem območju od 5 Hz do 13 MHz. Pri nizkih frekvencah merimo celotno upornost vzorca, medtem ko pri visokih frekvencah meje med zrni ne pomenijo več upora, in izmerimo samo upornost zrn. S **slike 5** je razvidno, da smo z višanjem temperature reoksidacije povišali upornost keramike, medtem pa je upornost zrn ostala nespremenjena. Iz tega lahko sklepamo, da nam je z reoksidacijo uspelo ustvariti potencialno pregrado na mejah med zrni, medtem ko so zrna ostala polprevodna. Na **sliki 6** je prikazana temperaturna odvisnost upornosti za nedopiran KNbO₃ in KNbO₃ z različnimi dodatki BaTiO₃. KNbO₃ brez dodatka BaTiO₃ ima visoko upornost pri sobni temperaturi, kar je posledica stabilnosti Nb⁺⁵-ionov. Vzorci z dodatkom BaTiO₃ imajo zaradi prisotnosti Ti⁺⁴-ionov, ki se hitro reducirajo v Ti⁺³, precej nižjo upornost pri sobni temperaturi. Upornost vzorcev z do 3 mol.% dodanega BaTiO₃ skokovito naraste do 5 redov velikosti v temperaturnem območju med 200 °C in 300 °C. Pri višjemu dodatku BaTiO₃ pa PTKU izgine, kar je verjetno posledica presežene trdne topnosti med KNbO₃ in BaTiO₃. Na upornost dodatno vpliva z BaTiO₃ bogata sekundarna faza, ki se izloča v materialu.

4 SKLEPI

Že minimalen dodatek BaTiO₃ k KNbO₃ močno vpliva na mikrostrukturo in sintranje KNbO₃-keramike. Temperatura sintranja in gostota sintrane keramike se z dodajanjem BaTiO₃ veča, medtem ko je rast zrn z dodatkom BaTiO₃ popolnoma zavrta.

Z uporabo presevnega elektronskega mikroskopa, rentgenske praškovne difrakcije in meritve temperaturne odvisnosti dielektrične konstante smo dokazali obstoj trdne topnosti na KNbO₃ bogati strani kvazi binarja KNbO₃ – BaTiO₃.

Keramiko smo reducirali pri temperaturi 1000 °C v redukcijski atmosferi in s tem dosegli polprevodnost. Z uporabo impedančne spektroskopije smo poiskali razmere, pri katerih smo reoksidirali meje med zrni. Tako smo dobili polprevodna zrna s potencialnimi pregradami na mejah med njimi. Tako pripravljena keramika z dodatkom od 0,5 do 3 mol.% BaTiO₃ izkazuje PTKU.

Problem, ki ostaja, je hitra reoksidacija tako pripravljene keramike. Že po nekajkratni meritvi upornosti do 500 °C se material reoksidira in upornost pri sobni temperaturi naraste za tri rede velikosti. Za preprečitev tako hitre reoksidacije bi bilo treba pripraviti keramiko z večjimi zrni.

5 LITERATURA

- ¹P. Raevnskii, E. I. Bondarenko, A. N. Pavlov in O. I. Prokopalo, Ferroelectrics, 76 (**1987**), 55–60
- ² I. P. Raevskii, A. N. Pavlov, O. I. Prokopalo in E. I. Bondarenko, Ferroelectrics, 83 (1988), 171–178
- ³ W. Heywang, Solid-State Electron, (1961), 51–58
- ⁴ R. J. Bratton in T. Y. Tien, J. Am. Ceram. Soc., 50 (1967), 90–93
- ⁵ E. Irlw in R. Blachnik, Thermochimica Acta, 185 (1991), 355–357
- ⁶ T. Takahashi, Y. Nakano in N. Ichinose, J. Ceram. Soc. Jap., 98 (1990), 879