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The inverted magnetron or cold cathode gauge (CCG) is a device used as a vacuum gauge. It is a very robust device, with
mostly very positive properties. The problem with its use lies in its nonlinear, temporary, variable characteristic and the fact that
the theory of its operation is not thoroughly understood. Neural networks are, therefore, an ideal solution for building a
nonlinear characteristics model, based on a set of measured points. Such a model is valid for some certain period of time. When
the characteristic of the CCG is altered significantly (due to aging and contamination), the process of recalibration needs to be
done, where again neural networks provide a very easy-to-use and robust tool.
In the article the simulation of the CCG characteristics is presented. It is meant to provide sufficiently large sets of data to
enable a study of the modelling properties of the used neural networks. The CCG characteristic was split into several segments,
each of which was modelled by a separate neural network. The results of the study are presented. The study ended in a
practically usable methodology for employing neural networks to calibrate (or recalibrate) the CCGs.
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Invertni magnetron ali merilnik s hladno katodo (CCG) je naprava, ki se uporablja kot grobi merilnik tlaka v vakuumskih
sistemih. To so robustne naprave s celo vrsto dobrih lastnosti. Problem prakti~ne uporabe je, da je karakteristika CCG zelo
nelinearna, ~asovno spremenljiva in da teorija delovanja ni povsem znana. Zato so nevronski sistemi idealno orodje za gradnjo
nelinearnega modela, ki je zgrajen na mno`ici izmerjenih to~k. Tak model je uporaben v nekem ~asovnem obdobju. Ko se
karakteristika CCG preve~ spremeni (zaradi staranja in kontaminacije naprave), je treba narediti rekalibracijo. Tudi pri
rekalibraciji so nevronski sistemi uporabljeni kot orodje, ki je robustno in enostavno za uporabo.
V prispevku je opisana simulacija karakteristike CCG. Namenjena je generiranju zadostnega {tevila to~k, ki so omogo~ile
{tudijo lastnosti modeliranja z nevronskimi sistemi. Celotna karakteristika CCG je bila razdeljena na nekaj segmentov, pri
~emer je bil vsak segment posebej modeliran s svojim nevronskim sistemom. Predstavljeni so rezultati {tudije. Rezultat {tudije
je prakti~no uporabna metodologija modeliranja karakteristike CCG z nevronskimi sistemi, ki jih uporabimo za kalibracijo
(rekalibracijo) merilnika.

Klju~ne besede: invertni magnetron, CCG, modeliranje, aproksimacija, nevronski sistemi, kalibracija

1 INTRODUCTION

The inverted magnetron or cold cathode gauge
(CCG) is normally used as a coarse pressure gauge in the
range from 1·10–12 to 1·10–2 mbar. During our work the
range from 1·10–9 to 1·10–5 mbar was used. (In the field
of vacuum phisics the mbar is commonly used. The SI
unit is Pa. 1 bar = 105 N/m2 = 105 Pa; 1 mbar = 1 hPa)

On the principles of CCG operation, our research
group has already published several articles 1,2,3,4,5. In the
scope of this article only a very brief overview of the
CCG’s operating principles is given.

In the inverted magnetron the electrons are trapped in
perpendicular magnetic and electric fields 5. The
electrons are moving on cycloid trajectories around the
anode, which is placed inside the discharge cell. The
kinetic energy of electrons is high enough to ionize the
atoms and molecules of the vacuum chamber’s atmo-
sphere inside the magnetron cell. After the collision of
the electron with an atom/molecule, the kinetic energy of
the electron decreases, therefore it is drawn into a
cycloid trajectory closer to the anode. After a series of

collisions, the electron reaches the anode and therefore
contributes to the anode current. Due to the higher mass/
charge ratio, the ions take wider cycloid trajectories than
electrons and they hit the cathode. By doing so, new
electrons emerge from the cathode surface and they add
to the electron cloud within the magnetron cell 6,7. Some
ions are trapped on the cathode surface and therefore
they no longer contribute to the chamber’s atmosphere.
This causes an unwanted pumping effect of the CCG
gauge. The gauge itself lowers the pressure inside the
vacuum chamber.

Inverted magnetrons are very robust devices. They
use very little power for their operation, they have a very
high sensitivity, they operate without a hot cathode and
they are relatively cheap 8. Usually, they act as relative
pressure gauges used for large vacuum systems, such as
accelerators, as well as in vacuum systems where the
additional RF pollution caused by the gauge (for exam-
ple, the hot filament cathode) cannot be tolerated 9,10,11,12.

The cold cathode gauges compared to the hot cathode
gauges also show a very low level of thermic outgassing,
they do not emit the unwanted x-rays, nor do they cause
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electron stimulated desorption. The electron cloud is
provided solely by the self-sustaining mechanism of the
vacuum chamber atmosphere’s atoms/molecules ionisa-
tion.

Although there are always enough electrons in the
rotating field of the CCG the anode current rises with the
pressure. The property that makes the use of the inverted
magnetron problematic is its non-linear characteristic
between the registered ion current and the actual
pressure in the vacuum chamber. At very low pressures
the device does not start easily and it can take some time
to form the spatial charge in the CCG cell. Devices
without the starter that provides the initial electron cloud
might not start in UHV (ultra-high-vacuum) conditions.

In addition to the many advantages of CCGs, these
instruments are restricted in their use by a decreasing
measuring accuracy over the operating time 13,14 as the
internal electrodes become contaminated. Thus, to
guarantee a consistently high measuring accuracy, this
gauge type needs to be calibrated regularly after a fixed
operating time period. The calibration process can be
improved by the use of neural network modelling.

The process of modelling the characteristics of the
inverted magnetron (CCG – cold cathode gauge) using
the neural networks is presented. The characteristics
were obtained on a calibration ultra-high-vacuum system
which consists of the test chamber, the extractor gauge,
the spinning rotor gauge, and the gas manifold with the
precision valve. The magnetron ion current was
measured simultaneously with the high-voltage measure-
ments between the cathode and the anode, all at different
pressures, that vary form 10–9 do 10–5 mbar. The working
voltage (cathode-anode) was varied in the range from
1.2kV to 9kV. For all measurements, the magnetic field
density remained at 1.3T. A very positive attribute of the
CCG is its extremely low thermal outgassing values, and
it can be used for measurements of low-pressure values
suitable for ultra-high-vacuum systems.

An unwanted property of the inverted magnetron is
its highly nonlinear dependence between the ion current
and the pressure in the vacuum system (Figure 1). In
some areas the CCG characteristic can also show discon-
tinuities.

The mechanisms of operation of such a complicated
device as an inverted magnetron are not understood in
detail. Consequently, classical mathematical modelling
is not appropriate to cover the analytical needs for
devices that serve as measurement equipment.

For the inverted magnetron in the role of a
vacuum-system pressure gauge the dependence between
the ion current, the operating voltage and the pressure in
the vacuum system must be known. In addition, in the
process of magnetron calibration, its characteristics must
be measured. Usually, the number of measured points is,
from the practical point of view, limited. The role of the
neural network is to model the characteristic in the
whole usable space between the measured points. The
complete set of measured points is used as the training
set for the multi-layer neural network with the classical
error-backpropagation training scheme. The formed
model must be able to reconstruct the input–output
relationship, where the input consists of the ion current
and the working voltage, while the vacuum system
pressure represents the output value. The built model
makes it possible to use the inverted magnetron as a
pressure gauge.

In the CCG’s lifetime, its characteristic changes, and
therefore it needs to be recalibrated several times. The
use of a neural network to model the CCG’s characte-
ristic is proposed.

Nonlinear CCG characteristic (I/p) is normally
approximated-modelled piecewise using Equation (1).

I = k pn (1)

with the sensitivity

I/p = k p(n–1) (2)

where I represents the ion current, n and k are the
constants that are different for the observed part of the
CCG characteristic. In the literature 15 the values of n
are listed from 1.05 to 2. The constant k depends on the
magnetic flux density, the geometry of the discharge
chamber and the gases present in the chamber. The
constant n depends primarily on the magnetic flux
density, the operating voltage and, again, on the
geometry of the device 7.

The theory of magnetron operation is not known in
such a detail as to enable the theoretical mathematical
model to cover the device’s operation for measurement
purposes 16. The relationship between the ion current and
the pressure above the so-called "magnetron knee" is
usually obtained in the logarithm tables of measured
values 17,18. The tables are formed in a time-consuming
calibration process. Furthermore, the use of such tables
makes operating the magnetron clumsy. The values
between those covered in the table are usually calculated
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Figure 1: The nonlinear characteristic I/U of the magnetron (Measu-
rements were conducted by dr. Alenka Vesel and dr. Miran Mozeti~,
both from the Josef Stefan Institute, Ljubljana, Slovenia.)
Slika 1: Nelinearna karakteristika I/U magnetrona (Meritve sta
izvedla dr. Alenka Vesel in dr. Miran Mozeti~, oba IJS, Ljubljana,
Slovenija)



by linear interpolation, which introduces additional
errors into the measurements.

The introduction of neural networks reduces the
number of measured points needed for the calibration
process. Since the neural network builds the nonlinear
CCG characteristic, the linear interpolation is no longer
needed and, consequently, any error produced by the
linear interpolation is avoided.

The important properties of the inverted magnetron
can be summarized in several points:

• The principle of the magnetron’s operation is not
known in such a detail as to enable a concise mathe-
matical model;

• The CCG characteristic is nonlinear and in some
places even discontinued;

• Usually, a very coarse piecewise mathematical model
is applied;

• The operation of the CCG as a pressure gauge is
stable and repeatable, although due to contamination
and aging process it needs recalibrations.

• It is usually used as a coarse relative pressure gauge.

1.1 A testing ground for the neural network modelling

In the process of modelling it is of vital importance
to have a reasonably large amount of data to first build
the model and second to validate its operation. It is rare
to have a situation where there is a large amount of data
readily to hand. Therefore, it is very good practice to
form some kind of generator that is able to provide the
amount of data needed to asses all the necessary aspects
of the formed model. The simulated data is intended only
to enable a thorough analysis of the modelling process
alone, before it can be used on "live" data (Figure 2). By
no means is the simulation intended to clarify the
physical phenomena that take place in the CCG.

The simulation of the inverted magnetron characte-
ristic uses the basic Equation (1), which combines the
pressure in the vacuum chamber and the ion current of
the inverted magnetron. Equation (1) also includes two
parameters that depend on the magnetic flux density, the

operating voltage, the geometry, and the materials used
to fabricate the device.

Figure 2 depicts the measured characteristic (U-p-I)
measured at four different pressure values, with different
operating voltages between 2.5 kV and 7.5 kV. There-
fore, for each operating voltage we have four different
ion-current values for different chamber pressures.

At first we have to assess the values for parameters k
and n. From four different characteristic points, the
least-squares method was used to calculate k and n at all
voltages. The upper part of Table 1 contains the assessed
values that use the measured values of the CCG. These
values represent the initial assessment of where the
simulated values should be. In the simulated characte-
ristic, a slightly narrower range was used (Table 1 –
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Figure 3: Simulation of the ideal characteristic of the inverted magnetron. Different curves are due to the different operating voltage U, with the
appropriate parameters k and n. The right-hand figure is the log 10 of the figure on the left-hand side.
Slika 3: Simulirana idealna karakteristika invertnega magnetrona. Parameter pri razli~nih krivuljah je delovna napetost U s pripadajo~ima k in n.
Desna slika je deseti{ki logaritem leve slike.

Figure 2: The measured characteristic of the inverted magnetron (log
values for p and I) (Measurements were obtained by dr. Bojan
Erjavec, IMT, Ljubljana, Slovenia.). Please note that the operating
range of the device spans several decades, which complicates the
modelling process.
Slika 2: Izmerjena karakteristika invertnega magnetrona (logaritem-
ske vrednosti) (Meritve je izvedel dr. Bojan Erjavec, IMT). Zaradi
merilnega podro~ja, ki obsega podro~je ve~ dekad, je logaritmiranje
nujno, sicer grafi~en prikaz ne bi bil smiseln.



lower part). The values used to create the simulation are
printed in the same table.

Tabela 1: Measured and simulated values for the parameters k and n

Tabela 1: Izra~unane in simulirane vrednosti za parametra k in n

MEASURED VALUES
Operating voltage

U/kV
� �

2.5 O.9130 1.0026
3 1.3866 0.9973

3.5 1.8302 1.0371
4 2.2576 1.0657

4.5 2.7023 1.1448
5 3.0021 1.1127

5.5 3.2945 1.0753
6 3.5140 1.0412

6.5 3.9903 1.0319
7 4.3364 1.0218

7.5 4.9055 1.0398
SIMULATED VALUES

Operating voltage
U/kV

� �

1 1.0000 1.0000
1.3 1.0500 1.0200
1.6 1.1000 1.0400
1.9 1.1500 1.0600
2.2 1.2000 1.0800
2.5 1.2500 1.1000
2.8 1.3000 1.1200
3.1 1.3500 1.1400
3.4 1.4000 1.1600
3.7 1.4500 1.1800
4 1.5000 1.2000

For the selected values of k and n (lower part of
Table 1), the ideal characteristic U-p-I is generated. This
follows the logarithm (base 10) of the pressure p and the
ion current I, while keeping the operating voltage con-
stant (Figure 3).

It is not our goal to simulate the ideal characteristic,
in fact we need the characteristic that includes the

departures from such idealizations. The ideal characte-
ristic is therefore modified in a few steps. All the modi-
fications are made on data in log space. The first
modification changes the value of the ion current versus
pressure (Figure 4). The modification follows Equation
(3).

lg (I2) = lg (I1) + sin (�(lg(p) + 7)/4) (3)

Here, I1 represents the ion current prior to the modifi-
cation, while the current I2 represents the value after it.

The second modification bends the CCG characte-
ristic with the regard to the operating voltage – Equa-
tion (4).

lg (I3) = lg (I2) + sin (�(U – 1)/3) (4)

The current I2 is the value prior to, and I3 is after, the
second modification (Figure 5).

The third modification introduces random fluctuat-
ions to the so-far modified characteristic. The modifica-
tion follows equation (5).

lg (I4) = lg (I3) + m Rand() (5)

As in previous modifications, the current I3 holds the
value prior to, and the I4 after, the modification. The
generator of random numbers is denoted by Rand(). It
generates pseudo random numbers with values from –1
to +1, while the parameter m sets the magnitude of the
influence of the randomization process. The result of the
third modification is shown in Figure 6.

The three modifications form the simulated CCG
characteristic, which is presented in 3D in Figure 7.

The data of the simulated CCG characteristic is
gathered in Table 2.

The same data can also be presented in the para-
meterized graph shown in Figure 8. The similarity
between the characteristic from Figure 1 and Figure 8 is
obvious.

The similarity between the actual CCG characteristic
and its simulated counterpart is close enough to enable a
study of the modelling properties of the neural network.
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Figure 4: The first modification of the ideal CCG characteristic – it bends the characteristic with regard to the pressure. Different curves have a
different operating voltage U, and the parameters k and n. The right-hand figure is the log 10 of the figure on the left-hand side.
Slika 4: Prva korekcija idealne karakteristike – ukrivljenost glede na tlak. Parameter pri razli~nih krivuljah je delovna napetost U s pripadajo~ima
k in n. Desna slika je deseti{ki logaritem leve slike.



1.2 The neural-network modelling of the CCG characte-
ristic

The calibration process for the inverted magnetron is
a time-consuming task. The neural-network modelling of
the characteristic must provide a reduction of the

required number of calibration points and it should
model the characteristic in the whole usable space. The
central problem of modelling the CCG is the fact that its
operation spans a large range, which is true for the
current (10–11 A to 10–4 A) as well as for the pressure
(10–9 to 10–6 mbar).
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Figure 5 : The second modification – the characteristic is bent with regard to the operating voltage. Different curves have a different operating
voltage U, and the parameters k and n. The right-hand figure is the log 10 of the figure on the left-hand side.
Slika 5: Druga korekcija karakteristike – ukrivljenost glede na napetost. Parameter pri razli~nih krivuljah je delovna napetost U s pripadajo~ima
k in n. Desna slika je deseti{ki logaritem leve slike.

Figure 6 : The third modification – the randomization process. Different curves have a different operating voltage U, and the parameters k and n.
The right-hand figure is the log 10 of the figure on the left-hand side.
Slika 6: Tretja korekcija karakteristike – naklju~na sprememba. Parameter pri razli~nih krivuljah je delovna napetost U s pripadajo~ima k in n.
Desna slika je deseti{ki logaritem leve slike.

Figure 8: The parameterized view of the simulated characteristic of
the CCG. The pressure p is the parameter for the presented curves.
The higher curve is obtained at higher pressure.
Slika 8: Primer parametriziranega prikaza simulirane karakteristike
invertnega magnetrona. Parameter je tlak v vakuumski komori – vi{ja
krivulja je dobljena pri vi{jem tlaku.

Figure 7: An example of the simulated characteristic of the mag-
netron
Slika 7: Primer simulirane karakteristike magnetrona



The neural-network approximation requires that both
the input and the output values are mapped in the range
from 0 to 1 (or in some versions from –1 to +1). The
main problem of mapping is that the small values are
modelled with a very low precision. The problem is
addressed in detail in 19. Basically, we have two strate-
gies to deal with the problem, one is to transform the
data in the log space, and the other is to split the charac-
teristic into the appropriate number of segments 5,20.

The solution to the problem of modelling the large
data range with the neural networks can not be found in
the literature. In such cases it is the usual approach to use
the log transformation of the whole data space and then
execute the modelling in log space. Nowadays, com-
puters are very fast, they provide very large memory
capacities, and so there is no difficulty in addressing the
problem from another perspective. Instead of performing
the log transformation, the data space can be segmented
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Table 2: The simulated CCG characteristic. The ion current of the inverted magnetron I/A in relation to the pressure p/mbar, and the operating
voltage U/kV. The CCG characteristic is divided into 10 segments for further processing. The central part of the table represents the ion current
I/A. The segments overlapping areas are shaded in gray.
Tabela 2: Simulirana karakteristika; katodni tok invertnega magnetrona I/A v odvisnosti od tlaka p/mbar in delovne napetosti U/kV. Celotna
karakteristika je zaradi potreb v nadaljevanju razdeljena na 10 segmentov. Vse vrednosti v osrednjem delu tabele so katodni tok I/A. Sivo
obarvana polja vsebujejo podatke, kjer se segmenti glede na vrednost tlaka p prekrivajo.

���� 4 3.7 3.4 3.1 2.8 2.5 2.2 1.9 1.6 1.3 1
������ I/A

1.00E-09 1.00E-10 7.37E-11 5.07E-11 3.05E-11 1.53E-11 6.19E-12 2.00E-12 5.20E-13 1.13E-13 2.14E-14 3.79E-15
2.00E-09 2.13E-10 1.63E-10 1.16E-10 7.22E-11 3.75E-11 1.57E-11 5.24E-12 1.41E-12 3.17E-13 6.24E-14 1.14E-14
3.00E-09 3.52E-10 2.74E-10 1.99E-10 1.27E-10 6.71E-11 2.87E-11 9.77E-12 2.69E-12 6.16E-13 1.24E-13 2.31E-14
4.00E-09 5.15E-10 4.07E-10 3.00E-10 1.93E-10 1.04E-10 4.51E-11 1.56E-11 4.35E-12 1.01E-12 2.06E-13 3.91E-14
5.00E-09 7.01E-10 5.60E-10 4.17E-10 2.72E-10 1.48E-10 6.49E-11 2.27E-11 6.40E-12 1.51E-12 3.10E-13 5.95E-14
6.00E-09 9.10E-10 7.34E-10 5.52E-10 3.63E-10 1.99E-10 8.81E-11 3.11E-11 8.86E-12 2.10E-12 4.37E-13 8.46E-14
7.00E-09 1.14E-09 9.27E-10 7.03E-10 4.66E-10 2.58E-10 1.15E-10 4.09E-11 1.17E-11 2.80E-12 5.87E-13 1.15E-13
8.00E-09 1.39E-09 1.14E-09 8.70E-10 5.81E-10 3.23E-10 1.45E-10 5.19E-11 1.50E-11 3.61E-12 7.61E-13 1.50E-13
9.00E-09 1.67E-09 1.37E-09 1.05E-09 7.07E-10 3.96E-10 1.79E-10 6.44E-11 1.87E-11 4.53E-12 9.60E-13 1.90E-13
1.00E-08 1.96E-09 1.62E-09 1.25E-09 8.46E-10 4.76E-10 2.16E-10 7.82E-11 2.28E-11 5.56E-12 1.19E-12 2.36E-13
2.00E-08 6.01E-09 5.15E-09 4.11E-09 2.88E-09 1.67E-09 7.87E-10 2.95E-10 8.92E-11 2.25E-11 4.96E-12 1.02E-12
3.00E-08 1.20E-08 1.05E-08 8.52E-09 6.08E-09 3.61E-09 1.73E-09 6.63E-10 2.05E-10 5.26E-11 1.18E-11 2.49E-12
4.00E-08 1.97E-08 1.75E-08 1.44E-08 1.05E-08 6.30E-09 3.07E-09 1.19E-09 3.73E-10 9.72E-11 2.22E-11 4.73E-12
5.00E-08 2.92E-08 2.61E-08 2.19E-08 1.60E-08 9.75E-09 4.80E-09 1.88E-09 5.96E-10 1.57E-10 3.63E-11 7.82E-12
6.00E-08 4.03E-08 3.64E-08 3.07E-08 2.27E-08 1.40E-08 6.93E-09 2.74E-09 8.77E-10 2.34E-10 5.44E-11 1.18E-11
7.00E-08 5.29E-08 4.83E-08 4.10E-08 3.05E-08 1.89E-08 9.47E-09 3.78E-09 1.22E-09 3.27E-10 7.67E-11 1.68E-11
8.00E-08 6.72E-08 6.16E-08 5.27E-08 3.95E-08 2.47E-08 1.24E-08 4.99E-09 1.62E-09 4.37E-10 1.03E-10 2.28E-11
9.00E-08 8.29E-08 7.65E-08 6.58E-08 4.96E-08 3.12E-08 1.58E-08 6.38E-09 2.08E-09 5.65E-10 1.34E-10 2.98E-11
1.00E-07 1.00E-07 9.28E-08 8.03E-08 6.09E-08 3.84E-08 1.96E-08 7.95E-09 2.61E-09 7.12E-10 1.70E-10 3.79E-11
2.00E-07 3.43E-07 3.30E-07 2.95E-07 2.32E-07 1.51E-07 7.98E-08 3.36E-08 1.14E-08 3.22E-09 7.97E-10 1.84E-10
3.00E-07 6.97E-07 6.83E-07 6.25E-07 5.00E-07 3.33E-07 1.79E-07 7.70E-08 2.67E-08 7.70E-09 1.94E-09 4.58E-10
4.00E-07 1.14E-06 1.14E-06 1.05E-06 8.55E-07 5.79E-07 3.16E-07 1.38E-07 4.83E-08 1.41E-08 3.63E-09 8.66E-10
5.00E-07 1.66E-06 1.67E-06 1.57E-06 1.29E-06 8.81E-07 4.86E-07 2.14E-07 7.61E-08 2.25E-08 5.84E-09 1.41E-09
6.00E-07 2.25E-06 2.28E-06 2.16E-06 1.79E-06 1.24E-06 6.88E-07 3.06E-07 1.10E-07 3.28E-08 8.57E-09 2.09E-09
7.00E-07 2.89E-06 2.96E-06 2.82E-06 2.36E-06 1.64E-06 9.20E-07 4.12E-07 1.49E-07 4.48E-08 1.18E-08 2.90E-09
8.00E-07 3.58E-06 3.69E-06 3.54E-06 2.98E-06 2.09E-06 1.18E-06 5.32E-07 1.93E-07 5.86E-08 1.55E-08 3.85E-09
9.00E-07 4.32E-06 4.48E-06 4.32E-06 3.66E-06 2.58E-06 1.46E-06 6.64E-07 2.43E-07 7.40E-08 1.98E-08 4.92E-09
1.00E-06 5.09E-06 5.31E-06 5.15E-06 4.38E-06 3.10E-06 1.77E-06 8.08E-07 2.97E-07 9.11E-08 2.44E-08 6.11E-09
2.00E-06 1.43E-05 1.54E-05 1.55E-05 1.36E-05 9.97E-06 5.90E-06 2.78E-06 1.06E-06 3.36E-07 9.34E-08 2.42E-08
3.00E-06 2.48E-05 2.73E-05 2.80E-05 2.51E-05 1.88E-05 1.13E-05 5.46E-06 2.12E-06 6.87E-07 1.95E-07 5.15E-08
4.00E-06 3.58E-05 3.99E-05 4.16E-05 3.79E-05 2.87E-05 1.76E-05 8.60E-06 3.39E-06 1.11E-06 3.20E-07 8.59E-08
5.00E-06 4.69E-05 5.29E-05 5.57E-05 5.13E-05 3.94E-05 2.44E-05 1.21E-05 4.81E-06 1.60E-06 4.64E-07 1.26E-07
6.00E-06 5.79E-05 6.60E-05 7.01E-05 6.52E-05 5.05E-05 3.15E-05 1.57E-05 6.33E-06 2.12E-06 6.22E-07 1.70E-07
7.00E-06 6.88E-05 7.90E-05 8.45E-05 7.92E-05 6.18E-05 3.89E-05 1.96E-05 7.93E-06 2.68E-06 7.92E-07 2.18E-07
8.00E-06 7.95E-05 9.18E-05 9.89E-05 9.33E-05 7.33E-05 4.65E-05 2.35E-05 9.60E-06 3.26E-06 9.72E-07 2.70E-07
9.00E-06 8.99E-05 1.04E-04 1.13E-04 1.07E-04 8.49E-05 5.41E-05 2.76E-05 1.13E-05 3.87E-06 1.16E-06 3.24E-07
1.00E-05 1.00E-04 1.17E-04 1.27E-04 1.21E-04 9.65E-05 6.19E-05 3.16E-05 1.31E-05 4.49E-06 1.35E-06 3.79E-07
2.00E-05 1.88E-04 2.27E-04 2.56E-04 2.53E-04 2.08E-04 1.38E-04 7.31E-05 3.12E-05 1.11E-05 3.46E-06 1.01E-06
3.00E-05 2.56E-04 3.16E-04 3.63E-04 3.66E-04 3.07E-04 2.08E-04 1.12E-04 4.91E-05 1.78E-05 5.67E-06 1.68E-06
4.00E-05 3.11E-04 3.89E-04 4.54E-04 4.64E-04 3.96E-04 2.72E-04 1.49E-04 6.59E-05 2.43E-05 7.84E-06 2.36E-06
5.00E-05 3.56E-04 4.51E-04 5.33E-04 5.51E-04 4.75E-04 3.30E-04 1.83E-04 8.18E-05 3.05E-05 9.94E-06 3.02E-06
6.00E-05 3.95E-04 5.05E-04 6.02E-04 6.28E-04 5.46E-04 3.83E-04 2.14E-04 9.67E-05 3.64E-05 1.20E-05 3.68E-06
7.00E-05 4.29E-04 5.53E-04 6.64E-04 6.98E-04 6.11E-04 4.32E-04 2.44E-04 1.11E-04 4.20E-05 1.39E-05 4.31E-06
8.00E-05 4.59E-04 5.95E-04 7.20E-04 7.62E-04 6.71E-04 4.78E-04 2.71E-04 1.24E-04 4.74E-05 1.58E-05 4.93E-06
9.00E-05 4.86E-04 6.33E-04 7.70E-04 8.20E-04 7.27E-04 5.20E-04 2.97E-04 1.37E-04 5.25E-05 1.76E-05 5.53E-06
1.00E-04 5.09E-04 6.68E-04 8.16E-04 8.74E-04 7.79E-04 5.60E-04 3.22E-04 1.49E-04 5.75E-05 1.94E-05 6.11E-06



into the convenient sub-spaces and the modelling
process should be executed for each segment separately
(Figure 9). Thus, separate models are created for each
separate segment. It is of vital importance that the data is
segmented in such a way that the segments are not too
wide, and that we have enough data for each separate
segment to do the modelling.

The segmentation theory shows the following
important details:

• Both the input and output spaces are divided into
several sub-spaces called segments. Each segment
has its own multiplication constant to map the area
close to the 0, 1 interval.

• The neural-network training tolerance is valid for
each segment only.

• When all the models are formed, the process of
merging them again into the single characteristic has

to be accomplished. The modelling error is again
valid for each segment separately.

The actual output value of the model ya is calculated
from the output value y of the neural network using the
equation

ya = kiy (6)

where ki denotes the multiplication constant of the i-th
segment, ya is the scaled value of the value y produced
by the neural-network model. The error produced by the
model of the i-th segment can be calculated as it stands
in Equation (7).

∆ ∆y
F

y
y

ii

n

ia = ⇒
=
∑ ∂

∂1

∆ ∆y k yia = ; ki << 1 (7)

where the function F represents the modelled function
and the meaning of the other symbols is the same as in
Equation (6).

We have found that reasonably good modelling
results can be acheived if at least five data points are
available for each segment (it is true for our CCG
example). The division of the modelled space depends
on various parameters. The most important parameters
are the shape of the modelled function and the admi-
ssible relative error that the model should fulfil. Table 2
shows the segmentation of the CCG characteristic into
10 segments. The segments should overlap in order to
allow the merging of the segments when the separate
segments are modelled. The overlapping region is shown
with the gray background (Table 2). Neural networks
(due to the pre-set training criteria) perform well at
higher values, so when two segments are to be merged,
one segment has locally high values, while the other is to
be joined with the locally low values. During the
merging process it is more likely that the data from the
segment that is to be merged with the locally high values
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Figure 9: The segmentation strategy – the complete data space is
segmented into several sub-spaces. Each segment is then modelled
separately
Slika 9: Strategija segmentacije – delitve podro~ja na ve~ podpodro-
~ij. Vsak segment je modeliran posebej

Figure 10: The CCG characteristic has been split into 10 segments.
Each segment is modelled on its own – a separate neural network.
Slika 10: Celotna karakteristika invertnega magnetrona je razdeljena
na 10 segmentov, vsak segment modelira svoj nevronski sistem.



are more accurately modelled, and some kind of
weighting (linear, nonlinear, etc.) should be used.

2 EXPERIMENTAL

Table 2 holds the data of the CCG characteristic,
which has been divided into 10 segments. Figure 10
graphically represents the segmenting process.

The segments were formed in such a way as to ensure
that for each segment the ion current I covers as little
area as possible. The main idea is that each segment
should cover such data space to ensure that the model
will produce results with acceptable errors.

Table 3: The data space covered by the separate segments
Tabela 3: Segmenti karakteristike invertnega magnetrona in podro~ja,
ki jih posamezni segmenti obsegajo

Segment ������ ���

1 1.00E-09 to 6.00E-09 3.79E-15 to 8.86E-12
2 6.00E-09 to 5.00E-08 8.46E-14 to 5.96E-10
3 5.00E-08 to 4.00E-07 7.82E-12 to 4.83E-08
4 4.00E-07 to 4.00E-06 8.66E-10 to 3.39E-06
5 4.00E-06 to 1.00E-04 8.59E-08 to 1.49E-04
6 1.00E-09 to 6.00E-09 5.20E-13 to 9.10E-10
7 6.00E-09 to 5.00E-08 8.86E-12 to 2.92E-08
8 5.00E-08 to 4.00E-07 5.96E-10 to 1.14E-06
9 4.00E-07 to 4.00E-06 4.83E-08 to 4.16E-05

10 4.00E-06 to 1.00E-04 3.39E-06 to 8.74E-04

Table 3 shows the chosen segments and the area
coverage for the pressure p as well as for the CCG ion
current I. A brief inspection of the segments reveals that
some segments still cover an area that spans well over

two decades. It is a necessary trade off since the
introduction of even more segments would require more
data points, which does not represent the problem in the
simulated environment, but for the real CCG calibration
it can pose a problem. For testing purposes a 5% training
tolerance was selected.

2.1 The testing environment

In the experimental work we studied the modelling
capabilities of neural networks, while at the same time
we were seeking the neural-network architecture that
would show the best modelling properties for the given
problem. The approximation theory for use with the
neural networks was corrected and published 20. In the
same publication, the concept of the neural-network
training stability was introduced. The training stability
deals with the variability of various possible neural-
network models and sets the boundary where all possible
models (obtained with different configurations) give
their results.

The testing of various neural-network architectures
was organised in an orderly fashion (Table 4), where the
set of numbers represents the number of artificial neural
cells in the appropriate layer. For clarification please
refer to 20. For example, the notation 2 10 20 1 means
that the input layer consists of 2 neurons, the first hidden
layer of 10 neurons, the second hidden layer of 20
neurons, and finally the output layer contains 1 neuron.
Since the experiment took quite some time to complete,
it was necessary to develop a system that controls the
experiments and in the case of power failure resumes
with work where it has been interrupted. The log file was
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Table 4: The organisation of the different neural-network configurations included in the experiment
Tabela 4: Seznam preizku{enih konfiguracij nevronskih sistemov

CONFIGURATION CONFIGURATION CONFIGURATION CONFIGURATION
1 2 5 5 1 21 2 5 10 5 1 41 2 10 15 5 1 61 2 15 20 5 1
2 2 5 10 1 22 2 5 10 10 1 42 2 10 15 10 1 62 2 15 20 10 1
3 2 5 15 1 23 2 5 10 15 1 43 2 10 15 15 1 63 2 15 20 15 1
4 2 5 20 1 24 2 5 10 20 1 44 2 10 15 20 1 64 2 15 20 20 1
5 2 10 5 1 25 2 5 15 5 1 45 2 10 20 5 1 65 2 20 5 5 1
6 2 10 10 1 26 2 5 15 10 1 46 2 10 20 10 1 66 2 20 5 10 1
7 2 10 15 1 27 2 5 15 15 1 47 2 10 20 15 1 67 2 20 5 15 1
8 2 10 20 1 28 2 5 15 20 1 48 2 10 20 20 1 68 2 20 5 20 1
9 2 15 5 1 29 2 5 20 5 1 49 2 15 5 5 1 69 2 20 10 5 1

10 2 15 10 1 30 2 5 20 10 1 50 2 15 5 10 1 70 2 20 10 10 1
11 2 15 15 1 31 2 5 20 15 1 51 2 15 5 15 1 71 2 20 10 15 1
12 2 15 20 1 32 2 5 20 20 1 52 2 15 5 20 1 72 2 20 10 20 1
13 2 20 5 1 33 2 10 5 5 1 53 2 15 10 5 1 73 2 20 15 5 1
14 2 20 10 1 34 2 10 5 10 1 54 2 15 10 10 1 74 2 20 15 10 1
15 2 20 15 1 35 2 10 5 15 1 55 2 15 10 15 1 75 2 20 15 15 1
16 2 20 20 1 36 2 10 5 20 1 56 2 15 10 20 1 76 2 20 15 20 1
17 2 5 5 5 1 37 2 10 10 5 1 57 2 15 15 5 1 77 2 20 20 5 1
18 2 5 5 10 1 38 2 10 10 10 1 58 2 15 15 10 1 78 2 20 20 10 1
19 2 5 5 15 1 39 2 10 10 15 1 59 2 15 15 15 1 79 2 20 20 15 1
20 2 5 5 20 1 40 2 10 10 20 1 60 2 15 15 20 1 80 2 20 20 20 1



created where all the events relating to the experiment
were stored.

The directory/file structure was organised to store the
experimental data. Each directory holds the data on one
neural-network configuration (80 directories). In each
directory there are 10 files: one for each segment. For
each segment and for each neural-network configuration
the different neural cell connection weights were
randomly generated and the network was trained. To
obtain the training stability belt, 100 different weight
sets were probed, meaning that 100 randomly different
(in the sense of connection weights) neural networks
were generated and trained. The gathered data from 100
separate experiments is stored in a file. The complete
experiment is therefore saved in 800 files.

All the generated neural networks were trained with
equal parameters that control the behaviour of the
neural-network training process. These parameters are as
follows: the learning rate (0.7), the momentum (0.5), and
the training tolerance (0.1). The training process is
stopped when the training tolerance is reached for all the
training points. Another limitation was active due to the
possibility that the training process does not reach the
preset training tolerance. In such cases the training is

stopped, another set of weights is generated and the
training is repeated.

2.2 The formation of training stability belt

Before the experiment commences, it is necessary to
assess the number of necessary repetitions of the training
processes that will give the information on the width of
the training stability belt. Two configurations were used
for the assessment: 2 10 10 10 1 – 3rd segment (Figure
11) and 2 10 20 15 1 – 6th segment (Figure 12). The
dynamics of the training stability belt was assessed, and
it was found that for the configuration 2 10 10 10 1
(Figure 13) after the 90th repetition the training stability
belt remains stable. For the configuration 2 10 20 15 1
(Figure 14) the case is almost the same. Therefore, the
number of training repetitions needed to form the
training stability belt was set to 100.
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Figure 12: The formation of the training stability belt – the con-
figuration 2 10 20 15 1, segment 6
Slika 12: Formiranje pasu stabilnosti u~enja – primer konfiguracije 2
10 20 15 1, segment 6

Figure 14: The formation dynamics of the neural network training
stability belt – configuration 2 10 20 15 1, segment 6. Again, we can
conclude that after the 90th repetition of the experiment, the training
stability belt does not change significantly.
Slika 14: Dinamika spreminjanja pasu stabilnosti u~enja – konfigu-
racija 2 10 20 15 1, segment 6. Tudi iz tega grafa lahko ocenimo, da se
po 90. ponovitvi u~enja pas stabilnosti u~enja ne spreminja ve~
bistveno.

Figure 11: The formation of the training stability belt – the confi-
guration 2 10 10 10 1, segment 3
Slika 11: Formiranje pasu stabilnosti u~enja – primer konfiguracije 2
10 10 10 1, segment 3

Figure 13: The formation dynamics of the neural network training
stability belt – configuration 2 10 10 10 1, segment 3. From the graph
we can conclude that after the 90th repetition of the experiment, the
training stability belt does not change significantly.
Slika 13: Dinamika spreminjanja pasu stabilnosti u~enja –
konfiguracija 2 10 10 10 1, segment 3 Iz grafa lahko ocenimo, da se
po 90. ponovitvi u~enja pas stabilnosti u~enja ne spreminja ve~
bistveno.



3 RESULTS AND DISCUSSION – THE
COMPARISON OF THE NEURAL-NETWORK
CHARACTERISTICS

We are searching for the configuration of the neural
network that would give the best results in terms of how
fast it is capable of learning the function and, on the
other hand, that it is capable of forming the model that
produces the narrowest training stability belt (the
modelled data is as close as possible to the original). The
result of the analysis of the performance of different
neural networks modelling one of the ten segments is
shown in Figure 15. Each point on the graph represents
one configuration. On the x axis the average number of
epochs needed to train the network is presented, while on
the y axis there is the average width of the training
stability belt expressed in mbar. For the segment 1, the
ratio between the highest and the lowest value of
pressure pmax/pmin is 6.0; the current ratio Imax/Imin =
2337.73. On average, the neural networks needed
325130 epochs to satisfy the training tolerance. The
trained models give, on average, a training stability belt
width of 5.5·10–10 mbar. The minimum value for the
number of epochs is 184900, and it is reached for the
configuration 2 15 5 5 1. The lowest value for the
training stability belt width is 4.5·10–10 mbar, which is
obtained for the configuration 2 20 15 10 1. On the other
hand, the worst results were obtained with the
configurations 2 5 20 1 (753820 epochs) and 2 20 5 1
(training stability belt width 6.7·10–10 mbar). The

calculated standard deviation for the number of required
epochs and for the segment 1 is 120651.7, while for the
training stability belt width it is 5.7·10–11 mbar. The
neural-network configurations that show the best results
for both the number of required epochs and the training
stability belt width for segment 1 are: 2 15 10 5 1; 2 20
10 20 1; 2 20 15 10 1 etc. The red points in Figure 15
represent the configurations that show the best modelling
capabilities, as well as those with the poorest results.

Such assessments were made for all 10 segments.
The analysis gives the neural-network configurations
that model each separate CCG characteristic segment as
well as possible (Figure 16).

From the analysis we can conclude that there is no
obvious rule that would point to the concrete architecture
of the neural network with the narrowest training
stability belt and, at the same time, with the fastest
learning. The most favourable configuration always
depends on the nature of the modelled dependence.
Table 6 summarizes the most important data on the
modelling properties of the neural networks for the
separate CCG characteristic segments.

The ratio between the highest and the lowest number
of required epochs for all the experiments regardless of
the configuration was 15.6, and the ratio between the
highest and the lowest value for the training stability belt
width was 7.1.

For the study of the segmentation strategy during the
CCG characteristic modelling, 80 000 models were
formed and 9 720 484 000 epochs were used.

4 CONCLUSION

In the presented study neural networks were used as
the modelling tool for the nonlinear CCG characteristic.
For building up the CCG model a reasonable amount of
measured data must be available, which is to be used as
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Figure 16: The best configurations to model the segmented charac-
teristic of the CCG
Slika 16: Najugodnej{e konfiguracije nevronskih sistemov za posa-
mezne segmente

Figure 15: Segment 1. pmax/pmin = 6.00; Imax/Imin = 2337.73;
p – 1.00E-09 to 6.00E-09 mbar; I – 3.79E-15 to 8.86E-12 A
Slika 15: Segment 1. pmax/pmin = 6.00; Imax/Imin = 2337.73;
p – 1.00E-09 do 6.00E-09 mbar; I – 3.79E-15 do 8.86E-12 A

Table 5: The data on modelling segment 1
Tabela 5: Podatki modeliranju 1. segmenta karakteristike

The analysis of
models Number of epochs Training stability

belt width (·10–9)
Average 325130 0.55578
Minimum 184900 0.45526
Configuration 2 15 5 5 1 2 20 15 10 1
Maximum 753820 0.67061
Configuration 2 5 20 1 2 20 5 1
Standard deviation 120651.7 0.05773



the training set for the neural network. The CCG
characteristic is split into several segments, where each
of them is modelled by its own neural network. The
created model is then used as the interface between the
measured ion current, the operating voltage, and the
actual pressure readout of the CCG.

However, due to the contamination and aging of the
CCG it needs to be recalibrated. The process is the same
as it is in the case of the first calibration. The presented
methodology is now fully developed and ready for use in
practical applications. Since neural networks run on
computers it is the matter of convenience whether it is
realized on a separate computer or a special micro-
computer system is developed (for example PIC 32 or
similar) and this then becomes an integral part of the
CCG device.
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Table 6: The modelling of the CCG characteristic segments – the data analysis
Tabela 6 Modeliranje segmentov karakteristike invertnega magnetrona – analiza poskusov

Segment
no.

No. of
epochs

Training
stability belt

width

No. of
epochs

NN
configuration

No. of
epochs

NN
configuration

Training
stability belt

width

NN
configuration

Average Average min. max. min.
1 325130 0.55578 184900 2 15 5 5 1 753820 2 5 20 1 0.45526 2 20 15 10 1
2 64178 2.84227 46430 2 5 15 1 146450 2 5 5 1 2.05883 2 20 20 20 1
3 87066 1.71938 56560 2 10 5 1 146420 2 5 5 1 1.27799 2 15 10 5 1
4 352009 1.99775 324390 2 5 5 20 1 482020 2 5 20 1 1.33548 2 15 10 1
5 27128 3.38247 8770 2 10 20 5 1 137350 2 5 20 1 1.54748 2 20 20 20 1
6 286188 0.25606 175580 2 10 5 20 1 726440 2 15 5 1 0.18384 2 20 10 5 1
7 19852 0.88654 14350 2 20 15 1 25330 2 20 5 10 1 0.59725 2 15 15 10 1
8 10571 0.50022 8230 2 10 20 15 1 21660 2 5 5 1 0.33963 2 15 20 20 1
9 36663 0.62073 25930 2 10 20 5 1 71420 2 10 20 1 0.41891 2 20 20 5 1

10 6276 1.31892 4270 2 10 20 15 1 13840 2 5 20 1 0.30653 2 5 15 1

Segment
no.

Training
stability belt

width
NN

configuration

No. of
epochs

Training
stability belt

width
max. value
of signal

Training
stability belt

width

Training
stability belt

width
Favourable

Configuration
max. St. dev St. dev % max. value % min. value.

1 0.67061 2 20 5 1 120652 0.05773 6 11.18 7.59 2 15 10 5 1
2 3.69692 2 10 15 1 11231 0.42213 50 7.39 4.12 2 20 20 20 1
3 2.33175 2 5 10 1 16105 0.22013 40 5.83 3.19 2 20 20 1
4 2.88486 2 5 15 5 1 39022 0.32619 40 7.21 3.34 2 10 5 10 1
5 5.61412 2 5 5 1 26164 0.86263 100 5.61 1.55 2 20 20 20 1
6 0.40764 2 20 5 1 172304 0.04225 6 6.79 3.06 2 20 10 5 1
7 1.21092 2 5 20 5 1 2449 0.15081 50 2.42 1.19 2 20 20 1
8 0.67534 2 20 10 1 3097 0.08581 40 1.69 0.85 2 15 20 20 1
9 0.78866 2 20 10 20 1 11317 0.06955 40 1.97 1.05 2 20 20 5 1

10 2.17188 2 10 20 5 1 2074 0.54849 100 2.17 0.31 2 5 10 20 1




