PREPARATION AND STUDY OF Mg₂Sn-BASED COMPOSITES WITH DIFFERENT COMPOSITIONS

PRIPRAVA IN KARAKTERIZACIJA LASTNOSTI KOMPOZITOV NA OSNOVI Mg₂Sn

Varužan Kevorkijan¹, Srečo Davor Škapin²

¹zasebni raziskovalec, Betnavska cesta 6, 2000 Maribor, Slovenia ²Srečo Davor Škapin, Institut "Jožef Stefan", Jamova 39, 1000 Ljubljana, Slovenia varuzan.kevorkijan@impol.si

Prejem rokopisa – received: 2010-02-22; sprejem za objavo – accepted for publication: 2010-03-15

Single-phase Mg₂Sn powders were successfully reaction-synthesized from the elements and applied for the preparation of Mg,Sn-based composites with different natures, microstructures and combinations of properties. These were fully dense (\geq 95 % T.D.) Mg- and Al-metal-matrix composites (MMCs) reinforced with either Mg₂Sn particles or mixtures of Mg₂Sn with TiC or

% 1.D.) Mg- and Al-metal-matrix composites (MIMCs) reinforced with either Mg₂Sn particles or mixtures or Mg₂Sn with fit or TiB₂ particulates by the infiltration of porous Mg₂Sn preforms with molten magnesium or aluminium; and (ii) Mg₂Sn intermetallic matrix composites discontinuously reinforced with TiC and TiB₂ particles by pressureless sintering. The microstructures of the composite samples were examined using scanning electron microscopy (SEM-EDS) and X-ray powder diffraction (XRD). The mechanical properties were evaluated by Vickers hardness measurements performed at room temperature, while the fracture toughness of the specimens was determined by applying the indentation method. Based on the data accumulated, an evaluation of the mechanical properties of these composites on the basis of the volume content constituents was performed.

content of different constituents was performed.

Moreover, the ability of various microstructures obtained with pressureless infiltration and sintering for tailoring the desired combination of mechanical properties. (e.g., toughening in combination with hardness) was also investigated and reported. Thus, the infiltration led to MMCs with different microstructures and mechanical properties, depending on the infiltrant applied.

The samples infiltrated with molten magnesium possessed a characteristic lamellar, sometimes referred to as "Chinese script", eutectic microstructure and thereby an enhanced fracture toughness (up to 7.7 MPa m^{1/2} in non-reinforced and 5.8 MPa·m^{1/2} in reinforced counterparts), in combination with a Vickers hardness superior to those of conventional Mg-Sn alloys. On the other hand, although the mechanical response (Vickers hardness superior to incontinuous or contentional ways). On the outer hand, although the mechanical response (Vickers hardness) of the samples infiltrated with aluminium was even better than in the counterparts infiltrated with magnesium, the absence of the "Chinese script" microstructure was observed to have a detrimental influence on the fracture toughness, which was significantly lower in these samples. The densification of intermetallic matrix composites (IMCs) with a Mg₂Sn matrix discontinuously reinforced with TiC or TiB₂

certain reinforcement performed by non-reactive, solid-state sintering resulted in samples with a high density (\geq 9% T.D.) and different combinations of mechanical properties compared to MMCs obtained by infiltration. The Vickers hardnesses of the sintered IMCs were much better than in the MMCs obtained by infiltration, with the exception of the fracture toughness, which was reduced below 1.8 MPa m1/2.

Key words: Mg₂Sn powder, synthesis, Mg₂Sn-based composites, sintering, infiltration, microstructure development, hardness, fracture toughness

Z reakcijo v trdnem smo iz elementov sintetizirali Mg₂Sn. Spojino smo zdrobili in prah uporabili za pripravo vrste kompozitov z različnimi mikrostrukturnimi in mehanskimi lastnostmi. Pripravili smo goste kompozite (\geq 95 % T. G.): (i) na osnovi kovinske matrice Mg in Al tako, da smo v porozne predoblike spojine Mg₂Sn ter predoblike različnih sestav na osnovi Mg₂Sn in TiC oziroma TiB₂ infiltrirali tekoči Mg oziroma Al, in (ii) na osnovi intermetalne spojine Mg₂Sn, ki smo jih pripravili s sintranjem Mg₂Sn z dodatkom ojačitvene faze trdin TiC oziroma TiB₂.

Mikrostrukturno analizo pripravljenih kompozitov smo opravili z vrstičnim elektronskim mikroskopom in elementno spektroskopsko disperzijsko analizo (EDS) ter z rentgensko praškovno difrakcijo. Mehanske lastnosti, trdoto po Vickersu in

zlomno žilavost smo merili pri sobni temperaturi. Dobljene rezultate smo razložili glede na fazno sestavo pripravljenih kompozitnih vzorcev. Opisali smo odvisnost mehanskih lastnosti infiltriranih in sintranih vzorcev v odvisnosti od mikrostrukturnih karakteristik.

Pri infiltraciji nastajajo kompoziti s kovinsko matrico (KKM) z različno mikrostrukturo in mehanskimi lastnostmi, kar je Pri infiltraciji nastajajo kompoziti s kovinsko matrico (KKM) z različno mikrostrukturo in mehanskimi lastnostmi, kar je odvisno od uporabljene kovine, ki jo infiltriramo. Kompoziti na osnovi Mg izkazujejo lamelarno evtektično mikrostrukturo (kitajska pismenka) in izboljšano zlomno žilavost (do 7,7 MPa m^{1/2} neojačani materiali in 5,8 MPa m^{1/2} ojačani kompoziti materiali) in tudi višjo trdnost po Vickersu glede na komercialne Mg-Sn zlitine. Kompoziti na osnovi infiltriranega Al izkazujejo višjo trdnost kot Mg kompoziti, vendar pa nižjo zlomno žilavost, ker ne tvorijo lamelarne mikrostrukture. Pri sintranju kompozitov na osnovi intermetalne Mg₂Sn-matrice, ki so bili ojačani s TiC oziroma TiB₂ nastajajo gosto sintrani kompoziti materiali (\geq 95 % T. G.) z različnimi mehanskimi lastnostmi. Trdota teh materialov je večja, kot jo izkazujejo kompoziti na osnovi kovinske matrice, vendar pa nižo zlomno žilavost, manj kot 1,8 MPa m^{1/2}.

Ključne besede: Mg₂Sn-prah, priprava, kompoziti na osnovi Mg₂Sn, sintranje, infiltracija, razvoj mikrostrukture, trdota, prelomna žilavost

1 INTRODUCTION

Current applications of magnesium stannide (Mg₂Sn) are limited to the optimisation of the microstructure and mechanical properties of magnesium ¹⁻⁷ and in lead-free aluminium alloys 8. In the Mg-Sn and Mg-Sn-Ca creepresistant magnesium alloys, Mg₂Sn precipitates are applied as a thermally stable intermetallic phase for suppressing the grain-boundary sliding and dislocation movement, resulting in an improvement of the creep properties.

However, due to its high melting point (770 °C), relatively low density (3.59 g/cm³ – about half that of the density of tin), excellent compressibility (2.83 10^{-11} m²/N, approximately 50 % higher than for Mg₂Si) and a thermal expansion coefficient (9.9 10^{-6} K⁻¹) similar to some borides and carbides ^{9,10}, magnesium stannide is a promising structural material, particularly in combination with magnesium and aluminium alloys and composites. The Vickers hardness of Mg₂Si (3.5–7.0 GPa), but still twice as high in comparison with the hardness of Mg-Sn alloys.

In addition, Mg₂Sn is a stoichiometric compound suitable for achieving characteristic eutectic microstructures (i.e., "Chinese-script") and therefore for tailoring the properties of composites (particularly the fracture toughness) with Mg₂Sn appearing as a matrix or a reinforcement phase.

In contrast to numerous investigations carried out in developing Mg-Sn alloys with Mg₂Sn precipitates formed *in situ*, only a limited number of investigations were concerned with the synthesis of Mg₂Sn powder ¹¹ and, to the best of our knowledge, none with its densification, alone or with some other reinforcing phases, i.e., as a matrix for high-temperature composites or as particulate reinforcement in metal matrix composites.

Hence, in the present study, the following investigations were performed in order to demonstrate the potential of Mg_2Sn as an advanced composite matrix or discontinuous reinforcement: (i) the synthesis of Mg_2Sn single-phase powder from the elements; (ii) pressureless sintering and characterisation of Mg_2Sn -based intermetallic matrix composites discontinuously reinforced with TiC or TiB₂ particles, and (iii) the formation and characterisation of Mg- or Al-metal matrix composites reinforced with either Mg_2Sn particles or mixtures of Mg_2Sn with TiC or TiB₂ particulates by the infiltration of porous Mg_2Sn preforms with molten magnesium and aluminium.

2 EXPERIMENTAL

In the first part of the experimental work, Mg₂Sn powder was synthesized with a reaction synthesis from the elements. As the source of magnesium and tin, cylindrical samples machined from pure magnesium and tin rods were used. Magnesium and tin samples in three different molar ratios (stoichiometric, with 5 % and 10 % excess of magnesium) were placed in a platinum crucible and heated in a vacuum furnace (for 2 h at 660 °C or for 1 h at 700 °C) in a static atmosphere of argon. This was followed by cooling to room temperature and characterisation of the as-obtained product with optical and scanning electron microscopy (OM and SEM) and X-ray diffraction (XRD). After that, the product was milled in an attrition mill for various milling times (0.5–2 h) in order to achieve the desired morphology of the Mg₂Sn

particles. The as-milled Mg₂Sn powders were then applied for various infiltration and sintering experiments.

The infiltration was performed by using porous preforms made from laboratory synthesized Mg₂Sn powder of grade C (Table 1) and mixtures of Mg₂Sn powder grade C and commercially available TiC (99.5 %, d_{50} = 4 μ m) and TiB₂ powders (99.5 %, d_{50} = 6 μ m), as listed in Table 2. The preforms were isostatically pressed at various pressures (from 80 MPa to 150 MPa) in order to achieve samples with different porosities. The samples obtained were cylinders, 50 mm high and 20 mm in diameter. As infiltrant, Al-xSn and Mg-xSn (x = 3%, 5 %) alloys were applied. Al-xSn and Mg-xSn alloys necessary for infiltration were prepared from pure aluminium or magnesium and pure tin powders melted in a graphite crucible with the protection of a fusing agent. The melt was then stirred to ensure homogeneity and, finally, it was cast into a preheated mould. The as-cast ingots were cut and machined into thin cylindrical plates having the same diameter as the Mg₂Sn preforms (20 mm). Finally, a preform sandwiched between two Al-xSn or Mg-xSn plates was placed in a ceramic crucible using the following procedure: the first Al-xSn or Mg-xSn plate was placed on the bottom of crucible and the preform was fixed on it using upper and lower preformatted steel plates. After that, the upper Al-xSn or Mg-xSn plate was placed on it. The volume of the Al-xSn or Mg-xSn plates was calculated to be approximately 50 % higher than the volume of the pores in the preform. The infiltration was conducted by heating the assembly in a vacuum furnace at 730 °C for 1 h, under a static atmosphere of argon.

After completion of the infiltration, the assembly was cooled to room temperature, and then the infiltrated preform was removed from the furnace. The green samples for sintering experiments were formulated by blending the synthesized Mg₂Sn powder (grade C, **Table 1**) with commercial ceramic powders (TiC and TiB₂) in appropriate amounts to create IMCs with mass fractions w = (10, 30 and 50) % of TiC or TiB₂ reinforcement. The powder blends were thoroughly mixed in a planetary mill and subsequently cold compacted. In all cases, the sintering of the compacts was conducted at 750 °C for 1 h in a static atmosphere of argon using a vacuum furnace. The as-synthesized composite samples were cut, machined and polished in accordance with standard procedures.

Microstructural characterization of the fabricated composites was performed with OM and SEM, whereas XRD measurements were applied to the samples to identify the phases and their crystal structure. A quantitative determination of the volume percentage of Mg_2Sn and ceramic particles in the matrix, as well as the retained porosity, was performed with an assessment of optical and scanning electron micrographs of polished composite bars using the point-counting method and image analysis and processing software. The composite

density measurements were carried out using Archimedes' principle, applying absolute ethanol as the immersion fluid. The initial density of the green compacts (preforms and tablets) was calculated from the mass and geometry of the samples.

Vickers hardness (HV) measurements were performed at room temperature on polished composite samples and calculated as the average of six indentations. These measurements were made with a conventional Vickers tester (load: 9.8–24.5 N for 15 s).

Due to their small dimensions and high brittleness, the fracture toughness of the specimens obtained was determined by applying the indentation method ¹². The K_{IC} of the composite samples was determined from submicron-derived indentation cracks and calculated according to the equations proposed by Niihara et al. ¹³.

3 RESULTS AND DISCUSSION

3.1 Mechanism of the formation, chemical composition and morphology of laboratory-prepared Mg₂Sn powder

Depending on the initial composition of the reaction mixture and the heating conditions, the concentration of Mg and Sn impurities in the synthesized Mg₂Sn phase varied significantly.

On applying reaction mixtures with a stoichiometric ratio of elemental magnesium and tin, more than w = 5 % of the tin remained in the reaction product obtained (Mg₂Sn powder grade A, **Table 1**), which was most probably caused by a loss of magnesium. This assumption was additionally confirmed by the experimental finding that the amount of non-reacted tin increased with the increasing temperature of the synthesis.

Table 1: Phase composition and morphology of laboratory-prepared $\mathrm{Mg}_2\mathrm{Sn}$ powders

Tabela 1: Fazna sestava in morfologija laboratorijsko izdelanih Mg_2Sn prahov

Powder	$\varphi(Mg_2Sn)/\%$	$\varphi(Sn)/\%$	<i>d</i> ₅₀ /μm
Grade A	95	5	3.3
Grade B	97	3	2.4
Grade C	99.8	0.2	2.1

On the other hand, by applying a reaction mixture with a small (x = 5 %) excess of magnesium, the amount of non-reacted tin was reduced below 5 % or even below w = 3 % (mass fractions) (grade B, **Table 1**) at a lower temperature of synthesis (660 °C).

Finally, by using a reaction mixture with the mol fraction x = 10 % excess of magnesium, single-phase Mg₂Sn (grade C, **Table 1**) with no Mg or Sn peak detected in the XRD pattern was prepared at 700 °C.

The investigation of the solidified product samples indicated that the reaction mechanism of the Mg₂Sn synthesis is homogeneous nucleation and growth. Based on the phase diagram of the Sn-rich corner in the Mg-Sn

Materiali in tehnologije / Materials and technology 44 (2010) 5, 251-259

binary system ¹⁴, it is evident that Mg will start to dissolve into the liquid phase immediately after the temperature exceeds the melting point of Sn (505 K). With increasing temperature, a greater amount of Mg will be dissolved and, after melt saturation, the Mg₂Sn will start to nucleate according to reaction 1:

$$Mg_{(s)} + Sn_{(l)} = Mg_2Sn_{(s)}$$
 (1)

Above the melting point of magnesium (923 K), the nucleation of Mg_2Sn will continue by nucleation from the saturated liquid phase according to reaction 2:

$$Mg_{(1)} + Sn_{(1)} = Mg_2Sn_{(s)}$$
 (2)

Thus, to achieve the complete conversion of reactants into Mg₂Sn, it is important to preserve a permanent excess of magnesium (approximately w = 10 %) in the system up to the end of the synthesis. The morphology of the laboratory-prepared Mg₂Sn powder, obtained with milling the solidified sample from reactive synthesis, is presented in **Figure 1**. As is evident, the powder obtained is non-agglomerated, with well-shaped individual particles with a size below 5 µm.

The typical phase composition in the synthesized Mg_2Sn powders is reported in **Table 1**. The compositions of various Mg_2Sn -TiC and Mg_2Sn -TiB₂ mixtures used for preforms in the infiltration experiments are listed in **Table 2**.

Table 2: The composition of various Mg_2Sn -TiC and Mg_2Sn -TiB2mixtures used for preforms preparation in the infiltration experiments**Tabela 2:** Sestava različnih zmesi Mg_2Sn -TiC in Mg_2Sn -TiB2,uporabljenih za pripravo predoblik

Mixture	Initial composition, φ /%
#1	100 % Mg ₂ Sn (grade C)
#2	75 % Mg ₂ Sn (Grade C)–25 % TiC
#3	75 % Mg ₂ Sn (Grade C)– 25 % TiB ₂
#4	70 % Mg ₂ Sn (Grade C)-30 % TiC
#5	70 % Mg ₂ Sn (Grade C)–30 % TiB ₂

3.2 Composites made by pressureless infiltration

3.2.1 Al-Mg₂Sn_(p) and Mg-Mg₂Sn_(p)

The infiltration of porous Mg_2Sn preforms (composition #1, **Table 2**) with molten Al resulted in fully dense composite samples with a continuous aluminium-based matrix, reinforced with Mg_2Sn particles and Mg_2Sn precipitates appearing near the primary Mg_2Sn particles, **Figure 2a**.

On the other hand, samples fully infiltrated with molten magnesium have a characteristic lamellar "Chinese script" eutectic microstructure, **Figure 3a**, and completely different mechanical properties, **Table 3**.

In both cases, due to the complete and non-reactive wetting of the Mg₂Sn preform skeleton with molten Mg or Al, under atmospheric pressure the infiltration proceeded spontaneously. The absence of chemical reactions between the preform skeleton and the molten infiltrants

Figure 1: a) SEM micrograph of Mg_2Sn powder (grade B) after milling, b) SEM micrograph of as-synthesized Mg_2Sn and c) X-ray powder diffraction pattern of the prepared compound Mg_2Sn : A – grade B powder (Table 1), and B – grade C powder (Table 1) Slika 1: a) SEM-posnetek Mg_2Sn prahu (tip B) po mletju, b) SEMposnetek vzorca Mg_2Sn pred mletjem in c) XRD-difraktogram sintetizirane Mg_2Sn -spojine: A – tip B (Tabela 1) in B-tip C (Tabela 1)

Figure 2: a) SEM micrograph and **b)** X-ray powder-diffraction pattern of the pressurelessly infiltrated Mg₂Sn-Al composite sample **Slika 2: a)** SEM-posnetek in **b)** XRD-difraktogram Mg₂Sn-Al-kompozita, pripravljenega z infiltracijo

Figure 3: a) SEM micrograph and b) X-ray powder diffraction pattern of the Mg₂Sn-Mg composite sample infiltrated at 730 °C showing a lamellar structure consisting of Mg₂Sn "Chinese-script" in a matrix of magnesium

Slika 3: a) SEM-posnetek in b) XRD-difraktogram Mg₂Sn-Mg-kompozita, infiltriranega pri 730 °C z značilno lamelarno mikrostrukturo ojačitve v Mg matriki

Figure 4: a) SEM micrograph and **b)** XRD spectrum of pressureless infiltrated Al-Sn-Mg₂Sn_(p)-TiC_(p) composite sample with an initial composition of the preform skeleton of $\varphi = 69 \%$ Mg₂Sn, $\varphi = 29 \%$ TiC and $\varphi = 2 \%$ Al (volume fraction $\varphi/\%$)

Slika4: a) SEM posnetk in b) XRD difraktogram vzorca Al-Sn-Mg₂Sn_(p)-TiC_(p) – kompozita, izdelanega z infiltriracijo predoblike na osnovi 69 % Mg₂Sn, 29 % TiC in 2 % Al (volumenski delež φ /%)

Materiali in tehnologije / Materials and technology 44 (2010) 5, 251-259

 Table 3: Average room-temperature Vickers hardness and fracture toughness of Al-Mg₂Sn composites prepared by pressureless infiltration

 Table 3: Povprečne vrednosti trdote po Vickersu in prelomne žilavosti, izmerjene pri sobni temperaturi na vzorcih Al-Mg₂Sn-kompozitov, izdelanih s postopkom infiltracije

Composite composition $\varphi/\%$	Retained porosity $\varphi/\%$	Density $\rho/(g/cm^3)$	Vickers hardness (GPa)	$\frac{K_{\rm IC}}{({\rm MPa}\;{\rm m}^{1/2})}$
18 % Al-82 % Mg ₂ Sn	2.2 ± 0.2	3.5 ± 0.4	0.87 ± 0.09	3.4 ± 0.4
29 % Al-71 % Mg ₂ Sn	3.5 ± 0.4	3.4 ± 0.3	0.82 ± 0.08	4.7 ± 0.5
38 % Al-62 % Mg ₂ Sn	4.7 ± 0.5	3.3 ± 0.3	0.75 ± 0.08	5.3 ± 0.5
19 % Al-81 % Mg ₂ Sn	2.0 ± 0.2	3.6 ± 0.4	0.88 ± 0.09	3.9 ± 0.4
28 % Al-72 % Mg ₂ Sn	3.2 ± 0.3	3.5 ± 0.4	0.83 ± 0.08	4.8 ± 0.5
38 % Al-62 % Mg ₂ Sn	3.9 ± 0.4	3.4 ± 0.3	0.79 ± 0.08	5.6 ± 0.6

Table 4: Average room-temperature Vickers hardness and fracture toughness of Mg-Sn-Mg₂Sn composites prepared by pressureless infiltration Tabela 4: Povprečne vrednosti trdote po Vickersu in prelomne žilavosti, izmerjene pri sobni temperaturi na vzorcih Mg-Sn-Mg₂Sn-kompozita, izdelanega s postopkom infiltracije

Composite composition $\varphi/\%$	Retained porosity $\varphi/\%$	Density $\rho/(g/cm^3)$	Vickers hardness (GPa)	$\frac{K_{\rm IC}}{(\rm MPa\ m^{1/2})}$
20 % Mg-80 % Mg ₂ Sn	2.2 ± 0.2	3.3 ± 0.3	0.66 ± 0.07	4.7 ± 0.5
28 % Mg-71 % Mg ₂ Sn	3.5 ± 0.4	3.1 ± 0.3	0.72 ± 0.07	6.5 ± 0.7
41 % Mg-59 % Mg ₂ Sn	4.7 ± 0.5	2.9 ± 0.3	0.77 ± 0.08	7.3 ± 0.7
19 % Mg-81 % Mg ₂ Sn	2.0 ± 0.2	3.4 ± 0.4	0.61 ± 0.06	5.4 ± 0.5
31 % Mg-69 % Mg ₂ Sn	3.2 ± 0.3	3.1 ± 0.4	0.69 ± 0.07	6.6 ± 0.7
38 % Mg-62 % Mg ₂ Sn	3.9 ± 0.4	3.0 ± 0.3	0.71 ± 0.07	7.7 ± 0.8

was proved with the corresponding X-ray diffraction patterns, **Figures 2b** and **3b**.

As evident from **Tables 3** and **4**, the Vickers hardnesses of the Al-Mg₂Sn and Mg-Mg₂Sn MMCs are improved with increasing the amount of Mg₂Sn particulate reinforcement. However, regarding the fracture toughness, quite the opposite behaviour was observed. The fracture toughness of Al-Mg₂Sn and Mg-Mg₂Sn MMCs decreases with an increasing amount of Mg₂Sn particulates.

Comparing the mechanical properties of the Al-Mg₂Sn and Mg-Mg₂Sn MMCs, it is found that the Vickers hardness is evidently better in the samples infiltrated with aluminium. However, the fracture toughness is an exception, becoming greater (almost doubled) in the samples infiltrated with magnesium.

The extraordinary fracture toughness of Mg-Mg₂Sn MMCs is caused by their characteristic lamellar structure consisting of Mg₂Sn "Chinese script" in a matrix of a magnesium solid solution.

3.2.2 Al-Mg₂Sn_(p)-TiC_(p) and Al-Mg₂Sn_(p)-TiB_{2(p)}

Preforms made from mixtures of laboratory-synthesized Mg_2Sn powder and commercially available TiC and TiB₂ powders (compositions #1, #2, #3 and #4), were also successfully pressurelessly infiltrated with molten aluminium, resulting in samples with almost theoretical density and interesting combinations of mechanical properties.

The microstructure of infiltrated samples consisted of a co-continuous network of Mg_2Sn phase interpenetrated by an aluminium matrix with finely dispersed TiC or TiB₂ particles, **Figures 4** and **5**. The absence of secon-

dary phases, **Figure 5b**, indicates that in this case the spontaneous infiltration also proceeded as a non-reactive process.

The reinforcement of an Al matrix with TiC or TiB_2 particles resulted in a marked improvement in the Vickers hardness. As evident from **Table 5**, the Vickers hardness of Al-Mg₂Sn-TiC and Al-Mg₂Sn-TiB₂ composites was approximately 50 % higher than in non-reinforced Al-Mg₂Sn samples, **Table 3**.

An examination of the fracture toughness, **Table 5**, revealed that the toughness of the MMCs was inversely proportional to the total amount of reinforcing phase. Moreover, it became lower when replacing some of the Mg₂Sn particles with more brittle TiC or TiB₂ particulates. This is well documented in **Tables 3 and 5** for samples with approximately the same total amount of particulate reinforcement.

3.2.3 Mg -Mg₂Sn_(p)-TiC_(p) and Mg-Mg₂Sn_(p)-TiB_{2(p)}

The experiments showed that the infiltration of Mg₂Sn-TiC and Mg₂Sn-TiB₂ preforms with molten magnesium proceeded spontaneously, without a chemical reaction between the preform skeleton and the molten magnesium. By adjusting the porosity of the preforms within the range the volume fractions of 30 % to 35 %, composites with different compositions listed in Table 6 were routinely fabricated. At 900 °C, the infiltration was complete within 1h, resulting in composite samples with less than $\varphi = 5$ % of retained porosity.

The resulting composite samples have a typical eutectic microstructure showing a lamellar structure consisting of Mg_2Sn "Chinese script" in a matrix of

Figure5: a) SEM micrograph and b) XRD spectrum of pressurelessly infiltrated Al-Sn-Mg₂Sn_(p)-TiB_{2(p)} composite sample with an initial composition of the preform skeleton $\varphi = 75$ % Mg₂Sn, $\varphi = 25$ % TiB₂. **Slika 5:** a) SEM-posnetek in b) XRD-defraktogram vzorca Al-Sn-Mg₂Sn_(p)-TiB_{2(p)}-kompozita, izdelanega iz predoblike na osnovi $\varphi =$ 75 % Mg₂Sn in $\varphi = 25$ % TiB₂

Figure6: a) SEM micrograph and **b)** XRD spectrum of Mg-Sn-Mg₂Sn_(p)-TiC_(p) with an initial composition of the preform skeleton φ = 70 % Mg₂Sn and φ = 30 % TiC

Slika6: a) SEM-posnetek in b) XRD-defraktogram vzorca Mg-Sn-Mg₂Sn_(p)-TiC_(p)-kompozita, izdelanega z infiltracijo predoblike na osnovi $\varphi = 70 \%$ Mg₂Sn in $\varphi = 30 \%$ TiC

Figure7: a) SEM micrograph and **b)** XRD spectrum of pressurelessly sintered Mg₂Sn-Sn-TiC_(p) composite sample with the initial composition $\varphi = 67 \%$ Mg₂Sn, $\varphi = 3 \%$ Sn and $\varphi = 30 \%$ TiC **Slika7: a)** SEM-posnetek in **b)** XRD-difraktogram Mg₂Sn-Sn-TiC_(p)-kompozita, izdelanega s sintranjem vzorcev, sestavljenih iz $\varphi = 67 \%$ Mg₂Sn, $\varphi = 3 \%$ Sn in $\varphi = 30 \%$ TiC

magnesium solid solution, additionally reinforced with fine TiC or TiB_2 particles, Figures 7a and 8a.

From the X-ray diffraction patterns of the composite samples, it is evident (**Figure 7b and 8b**) that besides Mg_2Sn reinforcement and irrespective of the matrix composition, no secondary phases were detected, which indicates that the pressureless infiltration of Mg_2Sn preforms with molten Mg-Sn-based alloys was not chemically assisted. A detailed SEM examination of interface regions of all the samples also confirmed the absence of chemical reactions between the composite constituents listed above.

Regarding the mechanical properties of the Mg-Mg₂Sn-TiC and Mg-Mg₂Sn-TiB₂ composite samples, which are summarized in **Table 6**, an increase in the particulate content (Mg₂Sn and TiC or TiB₂) was observed to improve the Vickers hardness, while at the same time reducing the fracture toughness. In addition, the Vickers hardness of the Mg-Mg₂Sn-TiC and Mg-Mg₂Sn-TiB₂ composite samples was found to be better than in the non-reinforced counterparts, while the fracture toughness was about 25 % lower.

Compared to the Al-Mg₂Sn-TiC or Al-Mg₂Sn-TiB₂ counterparts, the reduction of Vickers hardness is only slight. On the other hand, the fracture toughness of the Mg-Mg₂Sn-TiC or Mg-Mg₂Sn-TiB₂ composites is almost twice as high as in their Al-Mg₂Sn-TiC or Al-Mg₂Sn-TiB₂ counterparts, which is due to the lamellar structure

Materiali in tehnologije / Materials and technology 44 (2010) 5, 251-259

consisting of the Mg₂Sn "Chinese script" in a matrix of magnesium.

3.3 Composites made by pressureless sintering

3.3.1 Mg₂Sn-Sn-TiC_(p) and Mg₂Sn-Sn-TiB_{2(p)} composites made by pressureless sintering

Pressureless sintering of green samples made either from as-milled Mg₂Sn powders of grade A and B, **Table 1**,

or mixed with various amounts of TiC or TiB₂ particles, resulted in dense composite specimens with a retained porosity of less than the volume fraction $\varphi = 5$ %. In contrast, pressureless sintering of green samples made either from as-milled Mg₂Sn powder of grade C, **Table 1**, or mixed with various amounts of TiC or TiB₂ particles, was found to be incomplete, with more than $\varphi = 10$ % of retained porosity.

Tabela 5: Povprečne vrednosti trdote po Vickersu in prelomne žilavosti, izmerjene pri sobni temperaturi na vzorcih Al-Sn-Mg₂Sn_(p)(tip C)-TiC_(p) and Al-Sn-Mg₂Sn_(p)(tip A)-TiB_{2(p)}- kompozitov, izdelanih s postopkom infiltracije

Composite composition $\varphi/\%$	Retained porosity $\varphi/\%$	Density $\rho/(g/cm^3)$	Vickers hardness (GPa)	$\frac{K_{\rm IC}}{(\rm MPa\ m^{1/2})}$
28%Al-48%Mg ₂ Sn-23 %TiC	1.9 ± 0.2	3.6 ± 0.2	1.29 ± 0.13	2.8 ± 0.3
36%Al-46%Mg ₂ Sn-18 %TiC	2.2 ± 0.2	3.5 ± 0.2	1.14 ± 0.11	3.1 ± 0.3
28%Al-49%Mg ₂ Sn-23%TiB ₂	3.5 ± 0.4	3.6 ± 0.2	1.38 ± 0.14	2.7 ± 0.3
35%Al-46%Mg ₂ Sn-19%TiB ₂	4.7 ± 0.5	3.5 ± 0.2	1.26 ± 0.13	3.0 ± 0.3

 $\label{eq:sobalised} \begin{array}{l} \textbf{Tabela 6:} Povprečne vrednosti trdote po Vickersu in prelomne žilavosti, izmerjene pri sobni temperaturi na vzorcih Al-Sn-Mg_Sn_{(p)}(tip C)-TiC_{(p)} in Al-Sn-Mg_2Sn_{(p)}(tip A)-TiB_{2(p)}-kompozitov, izdelanih s postopkom infiltracije \\ \end{array}$

Composite composition $\varphi/\%$	Retained porosity $\varphi/\%$	Density $\rho/(g/cm^3)$	Vickers hardness (GPa)	$\frac{K_{\rm IC}}{(\rm MPa\ m^{1/2})}$
29% Mg-47% Mg ₂ Sn-1% Al-23 % TiC	1.9±0.2	3.4±0.2	1.16±0.12	4.9±0.5
36%Mg-38%Mg ₂ Sn-7%Al-19%TiC	2.2±0.2	3.5±0.2	1.0±0.19	5.8±0.6
29%Mg-48%Mg ₂ Sn-1%Al-22%TiB ₂	3.5±0.4	3.3±0.2	1.24±0.12	4.4±0.4
35%Mg-39%Mg ₂ Sn-7%Al-19%TiB ₂	4.7±0.5	3.3±0.2	1.13±0.11	5.3±0.5

Table 7: Average room-temperature Vickers hardness and fracture toughness of sintered Mg₂Sn -Sn-TiC samples. Tabela 7: Povprečne vrednosti trdote po Vickersu in prelomne žilavosti, izmerjene pri sobni temperaturi na vzorcih, sintranih Mg₂Sn -Sn-TiC-kompozitov

Composite initial composition $\varphi/\%$	Retained porosity $\varphi/\%$	Density $\rho/(g/cm^3)$	Vickers hardness (GPa)	$\frac{K_{\rm IC}}{({\rm MPa}~{\rm m}^{1/2})}$
97% Mg ₂ Sn (grade A)-3% Sn	4.8 ± 0.5	3.7 ± 0.2	1.0 ± 0.1	1.7 ± 0.2
87% Mg ₂ Sn (grade A)-3% Sn-10% TiC	3.5 ± 0.4	3.8 ± 0.2	1.4 ± 0.1	1.4 ± 0.1
68% Mg ₂ Sn (grade A)-2% Sn-30% TiC	4.3 ± 0.4	4.1 ± 0.4	1.5 ± 0.2	1.0 ± 0.1
49% Mg ₂ Sn (grade A)-1% Sn-50% TiC	4.9 ± 0.5	4.3 ± 0.5	1.8 ± 0.2	0.7 ± 0.1
95% Mg ₂ Sn (grade B)-5% Sn	3.1 ± 0.3	3.8 ± 0.5	0.9 ± 0.1	1.8 ± 0.2
86% Mg ₂ Sn (grade B)-4% Sn-10% TiC	2.7 ± 0.3	3.8 ± 0.3	1.0 ± 0.1	1.4 ± 0.1
66% Mg ₂ Sn (grade B)-3% Sn-30% TiC	3.9 ± 0.4	3.9 ± 0.4	1.3 ± 0.1	1.1 ± 0.1
48% Mg ₂ Sn (grade B)-2% Sn-50% TiC	4.1 ± 0.5	4.1 ± 0.5	1.7 ± 0.2	0.6 ± 0.1

Table 8: Average room-temperature Vickers hardness and fracture toughness of sintered $Mg_2Sn-Sn-TiB_2$ composite samplesTabela 8: Povprečne vrednosti trdote po Vickersu in prelomne žilavosti, izmerjene pri sobni temperatri na vzorcih, sintranih $Mg_2Sn-Sn-TiB_2$ -kompozitov

Composite initial composition) $\varphi/\%$	Retained porosity $\varphi/\%$	Density $\rho/(g/cm^3)$	Vickers hardness (GPa)	$\frac{K_{\rm IC}}{(\rm MPa\ m^{1/2})}$
97 % Mg ₂ Sn (grade A)-3 % Sn	4.8 ± 0.5	3.7 ± 0.2	1.0 ± 0.1	1.7 ± 0.2
87 % Mg ₂ Sn (grade A)-3 % Sn-10 % TiB ₂	3.5 ± 0.4	3.8 ± 0.2	1.5 ± 0.1	1.3 ± 0.1
68 % Mg ₂ Sn (grade A)-2 % Sn-30 % TiB ₂	4.3 ± 0.4	4.1 ± 0.4	1.7 ± 0.2	0.8 ± 0.1
49 % Mg ₂ Sn (grade A)-1 % Sn-50 % TiB ₂	4.9 ± 0.5	4.3 ± 0.5	1.9 ± 0.2	0.6 ± 0.1
95 % Mg ₂ Sn (grade B)-5 % Sn	3.1 ± 0.3	3.8 ± 0.5	0.9 ± 0.1	1.8 ± 0.2
86 % Mg ₂ Sn (grade B)-4 % Sn-10 % TiB ₂	2.7 ± 0.3	3.8 ± 0.3	1.0 ± 0.1	1.4 ± 0.1
66 % Mg ₂ Sn (grade B)-3 % Sn-30 % TiB ₂	3.9 ± 0.4	3.9 ± 0.4	1.6 ± 0.1	1.0 ± 0.1
48 % Mg ₂ Sn (grade B)-2 % Sn-50 % TiB ₂	4.1 ± 0.5	4.1 ± 0.5	2.0 ± 0.2	0.5 ± 0.1

The microstructure of the sintered samples reinforced with ceramic particulates is presented in **Figures 7 and 8**. The composites obtained consist of a continuous Mg_2Sn matrix and TiC or TiB₂ ceramic particulate reinforcement dispersed around the sintered Mg_2Sn grains and small Sn inclusions. In contrast, the microstructure of the dense, non-reinforced samples was uniform, with fully sintered Mg_2Sn grains and Sn inclusions.

The SEM-EDS evaluation of the samples and the XRD measurements imply that the Mg₂Sn-TiC and Mg₂Sn-TiB₂ systems are non-reactive, without secondary phases formed during the sintering, and that the sintering proceeded via a non-reactive mechanism, assisted by the liquid Sn phase. The mechanical properties of the sintered samples are listed in **Tables 7 and 8**.

The Vickers hardness of the pressurelessly sintered samples was found to be enhanced with an increasing amount of particulate reinforcement in the Mg_2Sn matrix, **Table 2**. In addition, the Vickers hardness measurements also confirmed that the sintering of samples with the same initial volume fraction of TiC or TiB₂ reinforcement resulted in composites with similar hardnesses. This is most probably caused by the similar microstructures of the Mg_2Sn -TiC and Mg_2Sn -TiB₂-composite samples, the same sintering mechanism and almost the same hardness of the TiC and TiB₂ reinforcing particulates.

4 CONCLUSIONS

The reactive synthesis of Mg₂Sn from the elements resulted in a high-yield, single-phase product with less than the mass fraction 0.2 % of impurities (Mg or Sn), depending on the composition of the initial reactive mixture.

- 1. Additional crushing and subsequent milling of the reaction product (i.e., in a planetary mill) was found to be an easy operation, enabling the cost-effective preparation of Mg₂Sn powders with an average particle size of less than 5 μ m, suitable for the production of Mg₂Sn-based advanced composites.
- 2. Depending on the selected synthesis technique of (i) pressureless infiltration of porous Mg₂Sn, Mg₂Sn-TiC and Mg₂Sn-TiB₂ preforms with molten aluminium and magnesium, or (ii) pressureless sintering of green Mg₂Sn-TiC and Mg₂Sn-TiB₂ compacts, Mg₂Sn-based composites of different nature, microstructure and combination of properties were successfully prepared, demonstrating the significant potential of the Mg₂Sn phase as a composite matrix and of the particulate reinforcement.
- 3. The investigation of the effect of different microstructures developed in Mg₂Sn-based composites on their mechanical properties (hardness and toughness) revealed that Mg₂Sn, as the stoichiometric compound, could be useful for tailoring an optimum combination of these properties.

- 4. The pressureless infiltration of porous Mg_2Sn , Mg_2Sn -TiC and Mg_2Sn -TiB₂ preforms with molten magnesium and aluminium resulted in dense ($\geq 95 \%$ T.D.) metal matrix composites with a metallic matrix discontinuously reinforced with Mg_2Sn and TiC or TiB₂ particulates. The infiltration proceeded spontaneously, without detectable chemical reactions between the preform skeleton and the molten infiltrants.
- 5. The composite samples infiltrated with molten magnesium possessed the characteristic lamellar "Chinese script" eutectic microstructure, while in samples infiltrated with molten aluminium the appearance of fine Mg₂Sn-Sn precipitates in an Al matrix, mostly in the vicinity of the initially introduced Mg₂Sn particles, was observed.
- 6. In preforms with the addition of TiC or TiB₂ ceramic reinforcement, the microstructure development during the infiltration occurred in the same way as in their non-reinforced counterparts. Because of the low temperature of the preform infiltration (750 °C), the particulate reinforcements remained chemically inert in contact with molten magnesium or molten aluminium, resulting in a final microstructure of infiltrated composite samples the same as in the non-reinforced counterparts. The only difference was observed inside the Al or Mg phases, which were completely reinforced with TiC or TiB₂ particles.
- 7. The microstructure of the composite samples obtained by pressureless infiltration could be tailored to consist of a continuous aluminium or magnesium matrix, discontinuously reinforced with Mg₂Sn of different morphologies (particulates in samples infiltrated with aluminium and the characteristic "Chinese script" eutectic phase in samples infiltrated with magnesium) and, when added, TiC or TiB₂ reinforcements. Such a microstructure design was projected in order to achieve an optimum combination of enhanced fracture toughness (particularly improved by the "Chinese script" phase appearing in samples infiltrated with magnesium), with tensile properties and a hardness superior to that of conventional Mg-Sn alloys.
- 8. The Vickers hardness was found to be better in samples infiltrated with aluminium than in counterparts infiltrated with magnesium. On the other hand, quite the opposite behaviour was found with regard to the fracture toughness. Due to their characteristic lamellar structure consisting of Mg₂Sn as the "Chinese script" in the matrix, composite samples infiltrated with magnesium possessed an enhanced fracture toughness almost twice that of the counterparts infiltrated with aluminium, in which the Mg₂Sn phase appeared as particulates.
- 9. Within each single group of infiltrated samples (i.e., samples with the same *qualitative* composition), the Vickers hardness was enhanced, while the fracture

toughness decreased with an increasing total amount of particulate reinforcement.

- 10. Pressureless sintering of green samples from Mg₂Sn powders with 3–5% of free Sn, or from mixtures of these powders with various amounts of TiC or TiB₂ particles, resulted in dense composite specimens with a porosity of less than the volume fraction $\varphi = 5$ %. In contrast, pressureless sintering of green samples from Mg₂Sn powder without free Sn or a mixture of the same powder with various amounts of TiC or TiB₂ particles was found to be incomplete, with more than $\varphi = 10$ % of porosity.
- 11. The composites obtained consisted of a continuous Mg₂Sn matrix and TiC or TiB₂ ceramic particulate reinforcement dispersed around the sintered Mg₂Sn grains and small Sn inclusions. In contrast, the microstructures of the dense, non-reinforced samples were uniform, with fully sintered Mg₂Sn grains and Sn inclusions.
- 12. During sintering, the formation of secondary phases was not observed. Densification of composite samples proceeded with non-reactive sintering, assisted by molten tin
- 13. The Vickers hardness of the sintered samples (intermetallic matrix composites with a Mg_2Sn matrix discontinuously reinforced with TiC or TiB₂ ceramic reinforcement) was significantly improved in comparison with the metal matrix composites obtained by infiltration. The exception was the fracture toughness, which in the sintered samples was reduced to approximately one-third or even one-quarter of the values measured in the metal matrix composites obtained by infiltration.
- 14. With densities higher than the density of aluminium and magnesium alloys, Mg₂Sn-based composites have a limited potential for the weight reduction of structural parts. However, some of the Mg₂Sn composites (especially Mg-Mg₂Sn metal matrix composites) could offer a unique combination of properties, including the ability of the composite microstructure

(lamellar, consisting of the Mg_2Sn "Scinese script" in a magnesium solid solution) to develop a toughening mechanism in combination with improved tensile properties and hardness.

Acknowledgement

This work was supported by funding from the Public Agency for Research and Development of the Republic of Slovenia, as well as the Impol Aluminium Company and Bistral, d. o. o. from Slovenska Bistrica, Slovenia, under contract No. 1000-07-219308.

5 REFERENCES

- ¹N. Hort, Y. Huang, T. A. Leil, P. Maier, K. U. Kainer, Adv. Eng. Mat., 8 (**2006**) 5, 359
- ² N. Hort, Y. Huang, K. U. Kainer, F. Moll, K. U. Kainer, Adv. Eng. Mat., 8 (2006) 4, 235
- ³⁴ J. Gröbner, A. Janz, A. Kozlov, Dj. Mirković, R. S. Fetzer, JOM, 60 (2009) 12, 32
- ⁴ M. Zhang, W. Z. Zhang, G. Z. Zhu, Scrpita Materialia 59 (2008), 866
 ⁵ Z. Min, Z. W. Zheng, Z. G. Zhen, Y. Kun, Trans. Nonferrous Met. China 17 (2007), 1428
- ⁶Z. X. Ping, C. Y. Gui, X. Y. HUa, Trans Nonferrous Met. Soc. China 18 (2008), s299
- ⁷ B. H. Kim, J. J. Jeon, K. C. Park, B. G. Park, Y. H. Park, I. M. park, Archives of Materials Science and Engineering, 30 (**2008**) 2, 93
- ⁸ S. Koch, H. Antrekowitsch, BHM, 153 (**2008**) 7, 278
- ⁹O. Madelung, U. Rössler, M. Schulz, Non-tetrahedrally bonded elements and binary compounds I, Springer-Verlag, 1998, 1–3
- ¹⁰ C. Zhang, P. Han, X. Yan, C. Wang, L. Xia, B. Xu, J. Phys. D: Appl. Phys., 42 (2009), 1. (doi: 125403)
- ¹¹ W. Y. Feng, D. W. Bo, Z. T. Young, Trans. Nonferrous Met. Soc. China, 19 (2009), 1196
- ¹² K. Kondoh, H. Oginuma, T. Aizawa, Materials Transactions, 42 (2001), 1293
- ¹³ K. Niihara, R. Morena, D. P. Hasselman, J. Mater. Sci. Lett. 1 (1982), 13
- ¹⁴ A. A. Nayeb-Hasemi, J. B. Clark, J. Bull. Alloy Phase Diagrams 63 (1984), 467