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Application of artificial neural networks for modeling of a complete process path in a steel production – from the scrap steel to
the material properties of semi products – is presented. The described approach is introduced as an alternative to physics based
through process modeling, with the advantage of lower complexity of the software and much lower computing times for
calculating the influence of a specific settings of the process parameters. This new approach can be beneficially used in
designing the production process. This is clearly demonstrated by estimating the influence of 34 alloying elements and process
parameters of 6 process steps on 5 final mechanical properties of spring steel (elongation, tensile strength, yield stress, hardness
after rolling and necking), based on 1879 recorded data sets from the production line in [tore Steel company. The ANN used is
of a multilayer feedforward type with sigmoid activation function and supervised learning. An important feature of this
approach is its dependence on accurate and sufficient data, acquired from the modeled process. Therefore, special care must be
devoted to validation of the obtained model and error estimation. The reliability and other characteristics of the available data
can vary to a great extent in real industrial practice, therefore analysis of the models is a highly customized task that has to be
performed on a case to case basis. A flexible and easily extensible software base has been developed in the scope of the
described work in order to adequately support research, development and practical application of this kind of models.
Keywords: steel production, mechanical properties of steel, artificial neural networks, response approximation, feed forward
networks with back propagation

Predstavimo uporabo umetnih nevronskih mre` za modeliranje celotne procesne poti izdelave jeklenih polizdelkov – od rene do
snovnih lastnosti polizdelkov. Opisani pristop je vpeljan kot alternativa fizikalnemu modeliranju skozi proces s prednostjo
manj{e kompleksnosti programske opreme ter bistveno manj{imi ra~unskimi ~asi za izra~un vpliva specifi~ne nastavitve
procesnih parametrov. Tak{en pristop se lahko s pridom uporablja pri na~rtovanju proizvodnega procesa. To je nazorno
prikazano pri oceni vpliva 34 legirnih elementov in procesnih parametrov 6 procesnih korakov na 5 kon~nih snovnih lastnosti
vzmetnega jekla (raztezek, natezna trdnost, meja te~enja, trdota po valjanju in skr~ek), na podlagi 1879 zabele`enih podatkovnih
setov iz proizvodne linije podjetja [tore Steel. Uporabljena je usmerjena nevronska mre`a s sigmasto aktivacijsko funkcijo in
nadzorovanim u~enjem. Pomembna zna~ilnost tega pristopa je njegova odvisnost od pravilnih in zadostnih podatkov,
pridobljenih iz procesa. Zato se je potrebno posebej posvetiti validaciji pridobljenega modela in oceni napak. Zanesljivost in
ostale zna~ilnosti razpolo`ljivih podatkov, pridobljenih iz realnih industrijskih procesov, se obi~ajno zelo razlikujejo, zato je
analiza tak{nih modelov zelo specifi~na in mora biti narejena od primera do primera. V ta namen je bila izdelana fleksibilna in
enostavno raz{irljiva programska oprema, ki omogo~a primerno podporo raziskavam, razvoju in prakti~ni uporabi tovrstnih
modelov.
Klju~ne besede: izdelava jekla, mehanske lastnosti jekla, umetne nevronske mre`e, aproksimacija odziva, nevronske mre`e s
povratnim raz{irjanjem napak

1 INTRODUCTION

Controlling the final mechanical properties of
products or semi products is very important for steel
production companies. This is a difficult task because
there are a number of sequentially connected processes
where the output of one process is an input to the next
one. Different physics based numerical models can be
used to predict the outcomes, but their development can
be very complicated and time consuming.1,2 Artificial
neural networks (ANN) based models3,4 can be used as
an alternative to these physics based numerical models.
Over the last years, ANNs have been successfully used

across an extraordinary range of problem domains.
Examples can be found in almost all fields of industry as
well as in research areas that show promise for the
future.5 ANNs are already being used in steel production
industries in modeling of blast furnace,6 continuous
casting, steel rolling,7 etc. The first use of ANN in
modeling of the entire production path (also referred to
as “through process modeling”) has been demonstrated
for production of aluminum foil in8. Furthermore, a pre-
liminary study9 was made for complete steel production
path, while in this study, additional parametric studies
and sensitivity tests were added. The main drawback of
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ANN models over physics based models is the fact that
they can be used based on the specific training data only,
and do not allow generalization to different production
plants. Only the developed methodology is transferable.

In the present paper, we study the possibility of using
ANN-based models as a comprehensive decision support
tool in steel production. We explore the prediction of
important mechanical properties of steel (elongation,
tensile strength, flow limit, hardness and shrinkage)
based on values of influential process parameters that
determine the complete steel production path. The steel
manufacturing process in the [tore Steel company and
the respective available data were considered10 as a basis
for the present study. The manufacturing process path
consists of six individual processes:11,12 steel making,
continuous casting of steel, hydrogen removal, reheating,
multiple stage rolling, and cooling on the cooling bed.
Each of these processes can be independently modeled
by a physics based numerical model.13–21 The state of the
steel (shape, microstructure) of an individual process
influences the downstream processing (subsequent pro-
cesses in the process chain) and thus act as a part of
input data (e.g. defining initial or boundary conditions)
in the model of that process. This is schematically repre-
sented in Figure 1. In the current work we use another
approach where an ANN is used to build a complete
model of the whole production chain. We model the
outcomes after the last process step and relate them to
process parameters defining all processes involved in the
production path. After the model is built, we can explore

the effect of variation of process parameters to the final
material properties, e,g. by changing process parameters
independently in parametric and sensitivity tests and
observing model outputs.

2 MODELING SOFTWARE

A software for construction and use of ANN-based
models has been developed in the scope of this work.
The software was designed to match the challenges and
requirements met when solving this kind of problems. In
particular, it has to provide good flexibility in designing
training strategies, filtering training data, verification of
results, testing different network layouts, integration
with other software, etc. This is crucial when approxi-
mating behavior of steel processing systems with large
number of processing parameters. Data obtained from
such systems is often inaccurate or even corrupted due to
practical limitations in acquisition procedures. Response
sampling can not be planned in advance but is accom-
modated to production schedules in the factory, therefore
information available may be deficient in some regions
of parameter space in order to obtain good response
approximation and therefore verification of results plays
an important role. The software platform has been elabo-
rated in22,23.

The Aforge.Net library is used as ANN framework.24

A convenient characteristics of neural networks is that
approximation can be performed in two separate stages
(Figure 2). In the training stage, the network is trained
by using the sampled response (either measured or
calculated by a numerical model). In the approximation
stage, trained network is used for all subsequent calcu-
lations of approximated response at arbitrary values of
input parameters. This gives the neural networks an
important advantage over other modeling techniques,
since the second stage if very fast as compared to the
first stage. The software takes full advantage of this
feature by separating these stages. This is especially
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Figure 2: Approximation with neural networks: training a network
with presented data pairs (top) and calculation of approximated
response with trained network (bottom)
Slika 2: Aproksimacija z nevronskimi mre`ami: u~enje mre`e na
podlagi podatkovnih parov (zgoraj) in izra~un aprokismiranega odziva
z nau~eno mre`o (spodaj)

Figure 1: Steel manufacturing process modeling strategy
Slika 1: Strategija modeliranja procesa izdelave



important when performing extensive analyses of the
considered process on the basis of the developed ANN
models, or when incorporating the models in automatic
optimization procedures.25,26

3 CONSTRUCTION OF THE ANN-BASED
PROCESS MODEL

In the considered production setup from the [tore
Steel company, the complete process is defined by 123
influential parameters (Table 1). There are 24 parame-
ters defining the steel grade, 12 process parameters
defining the continuous casting, 2 parameters the hydro-
gen removal, 4 parameters the reheating furnace, 31
parameters the rolling mill, 43 parameters the continuous
rolling mill, and 7 parameters the cooling bed. On the
output side, five mechanical properties of the final pro-
duct are observed and represent the output values of the
model (Table 2).

Table 1: Process parameters (input)
Tabela 1: Procesni parametri (vhod)

Processes / properties Number of parameters
Composition 24
Continuous casting of steel 12
Hydrogen removal 2
Billet reheating furnace 4
Rolling mill 31
Continuous rolling mill 43
Cooling bed 7
Total 123

Table 2: Material properties (output)
Tabela 2: Snovne lastnosti (izhod)

Final mechanical
properties

Elongation (A)
Tensile strength (Rm)

Yield stress (Rp0.2)
Hardness after rolling (HB)

Necking (Z)

For construction of the models, data was manually
collected from different databases representing produc-
tion of the steelwork in year 2011. Data was first sepa-

rated for two billet dimensions (140 mm and 180 mm)
which undergo considerably different process parame-
ters. In addition, the data had to be filtered by applying a
number of specially designed criteria in order to exclude
corrupted data and overshoots. After these procedures, a
total of 1879 data sets for dimension 140 mm have been
prepared and used in the training procedure.

This data was randomly divided into disjoint training
and verification sets. Training data was then used in
training a feed forward neural network with sigmoid acti-
vation function, in which we iteratively minimize error
of the model on this data by the back propagation algo-
rithm. After the convergence was achieved, the model
was validated on the verification set that was not
involved in the training, in order to estimate its accuracy
(Figure 3).

A number of training procedures with different ANN
architectures and training parameters have been per-
formed in order to find the best settings. Figure 4 shows
convergence of maximum relative training errors for 15
different ANN settings.

Optimal settings (listed in Table 3) were identified
by the convergence curve that reaches the lowest error at
the end of the training procedure.

Table 3: ANN training and architecture settings
Tabela 3: Nastavitve u~enja in arhitekture umetne nevronske mre`e

Training parameters
Learning rate 0.4
Momentum 0.6
Alpha value 1.0

Architecture
Neurons in input layer 34
Neurons in 1st hidden layer 25
Neurons in output layer 5
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Figure 4: Maximal relative training error convergence for the best 15
trained ANNs
Slika 4: Najve~ja relativna napaka konvergence napake u~enja za 15
najbolj{ih umetnih nevronskih mre`

Figure 3: Training and verification procedure for model construction
Slika 3: Proces u~enja in verifikacije pri izdelavi modela



In order to build the final model, we trained the ANN
with optimal architecture and training parameters from
Table 3. The maximum number of epochs was set to 105.
Training procedures were performed on the HP ProLiant
DL 380 G7 workstation with 2 six core 3.47 GHz Intel
Xenon X5690 processors (6*256 kB L2 and 12 MB L3
cache), with 24GB installed RAM. Trained neural net-
work which gave us the best results was trained in appro-
ximately 13 hours. A remark should be given here, that
training of ANN is indeed a cumbersome and CPU time
consuming task, typically on the same order of a compu-
tational cost of a physics based model. However, when
the ANN is trained, the use of it is typically several
orders of magnitude faster than executing the physical
model.

4 RESULTS

The training procedure results in the artificial intelli-
gence model that relates the modeled output values v to
the input parameters p:

v = v(p) (1)

In the present context, v contains mechanical pro-
perties from Table 2 and p contains process parameters
from Table 1.

The obtained model can be used for a detailed study
of response of final mechanical properties on variation of
process parameters, which gives operators a better
insight into the process and can be used as a valuable
decision support tool. This is endorsed by low computa-
tional times necessary to evaluate a single response once
the model is built, which are around 10–3 s in our case.

For illustration, we show dependence of hardness on
carbon fraction around different points in the space of
model input parameters (Figure 5). We have randomly
selected 5 sets of parameters (points in the parameter

space) from the training data. Then we varied the para-
meter of interest (in our case the carbon mass fraction),
while the other parameters remained fixed. The parame-
ter was varied from the minimum to the maximum value
attained by that parameter within the training data.

It can be seen from Figure 5 that hardness generally
increases with increasing carbon mass fraction, which is
in line with the well-established metallurgical know-
ledge. This is observed for different fixed combinations
of other parameters, while the precise form of the rela-
tion varies significantly with the values of other para-
meters of the model. Since influences of individual
parameters are highly correlated, it is important for some
purposes to study behavior over larger range of process
settings. This facilitates to obtain a deeper insight in the
process. The described approach employing ANN-based
models is ideal for such purpose due to the short calcu-
lation times and exhaustiveness of information that is
provided by such models.

In another illustrative example, we take a different
point of view. Instead of focusing on influence of indi-
vidual parameters, we try to obtain a broader picture of
the comparative influence of different parameters on the
observed outcomes. We first chose a set from the training
data sets close to the center of the interval containing the
measured data. We denote the vector of input parameters
of this set by pc = pi. We then varied one by one each
component of the vector (i.e. the particular composition
or process parameter) while the others were held fixed,
and observed how the modeled quantities change as
result of this variation. More precisely, we considered
the following function of one variable:

u t v p p p t p p

i

ij i j- j+( ) ( , , ..., , , , ..., )

, ...

=

=
c1 c2 c 1 c c1

1 N j Nv p, , ...,=1
(2)

where Np is the number of model parameters and Nv is
the number of output quantities of the model. Each ele-
ment of the parameter vector pc was varied over the
whole interval that the given parameter attained in the
provided industrial data. The variations were then calcu-
lated for each output value (denoted by index i in equa-
tion (2) and for each parameter (index j in equation (2)
and used as a measure of influence of the specific
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Figure 6: Influence of process parameters on changes in elongation
(A), ordered from the most influential one on the left, to the least
influential one on the right
Slika 6: Vplivi procesnih parametrov na spremembe v elongaciji (A),
urejeni od najbolj vplivnih na levi do najmanj vplivnih na desni

Figure 5: Steel hardness after rolling as a function of the carbon mass
fraction, calculated by the ANN model on five training sets
Slika 5: Trdota jekla po valjanju kot funkcija masnega dele`a ogljika,
izra~unana z umetno nevronsko mre`o na petih u~nih mno`icah



parameter. The results are shown in Figures 6 to 10 and
are for each parameter calculated by:

( )Δu t u t u tij ij ij( ) max ( ) min ( )= − (3)

where max ( )u tij and min ( )u tij represents maximum and
minimum influence of j-th parameter on i-th output
value.

Table 4 shows 3 most influential parameters for each
material property. From the available parameters that we
use for training the ANN (Figures 6 to 10), different
elements of the composition of the material are the most
influential for all five properties. Process parameters do
not have major influence. The most important parame-
ters obtained from the present ANN response are tempe-
rature of the liquid steel (Tcast) for elongation and
hardness after rolling, temperature difference in the
mould (Dtmould) for tensile strength, cooling water tem-
perature in zone 1 (TZone1) for yield stress and cooling
water flow rate in first spray system (Qsistem1) for
necking. Obviously, the response of the model is not
entirely expected. This indicates that the represented
methodology should be used with care and finally judged
by engineering expert knowledge. It is however true, that
in the present model, several important process parame-
ters are missing due to the lack of data acquisition in the
plant (particularly for rolling), since a new rolling mill
has been installed recently.

Table 4: The 3 most influential parameters for each mechanical pro-
perty
Tabela 4: Trije najbolj vplivni parametri za posami~no mehansko last-
nost

Elonga-
tion (A)

Tensile
strength

(Rm)

Yield
stress
(Rp)

Hardness
after

rolling
(HB)

Necking
(Z)

1 Ni C C Ti V
2 Al Cr Ni C Si

3 Ti
Delta

temperature
in the mould

Mn Ni C

5 CONCLUSIONS

ANN have been used to model a complete production
path in a steelwork. The developed methodology is
essentially a black box modeling approach. Outcomes of
the process can be predicted for arbitrary combination of
process parameters without directly considering the phy-
sical background of the modeled process, but are instead
relying on information about previous realizations of the
process. As an example, a model of production line in
the [tore Steel company was studied, reduced to 34
influential process parameters and with 5 observed pro-
perties of the final product. Several combinations of
models that will include even less influential parameters
will be studied in the future.

A significant advantage of the approach, as compared
to the physics based numerical models, is much lower
complexity of the model. There is no need to calibrate
the model in order to compensate for physical simplifi-
cations and inaccurate knowledge of model constants,
since the model is based on the realistic data gained from
the actual process. Once the model is built, evaluation
times are extremely short, in the order of a millisecond,

T. KODELJA et al.: TOPMOST STEEL PRODUCTION DESIGN BASED ON THROUGH PROCESS MODELLING ...

Materiali in tehnologije / Materials and technology 48 (2014) 2, 269–274 273

Figure 10: Influence of process parameters on changes in necking (Z)
Slika 10: Vplivi procesnih parametrov na spremembe vratu te~enja
(Z)

Figure 9: Influence of process parameters on changes in hardness
after rolling (HB)
Slika 9: Vplivi procesnih parametrov na spremembe trdote po valjanju
(HB)

Figure 8: Influence of process parameters on changes in yield stress
(Rp)
Slika 8: Vplivi procesnih parametrov na mejo te~enja (Rp)

Figure 7: Influence of process parameters on changes in tensile
strength (Rm)
Slika 7: Vplivi procesnih parametrov na natezno trdnost (Rm)



compared to several hours or even days that would be
necessary for state-of-the-art physics based models of
the same process. This represents a great advantage in
tasks where large number of evaluations are required,
such as automatic optimization of process parameters or
detailed parametric studies.22,23 This kind of modeling
has therefore a great potential to enable better insight
and understanding of industrial processing, as well as to
serve as a powerful decision support tool. This potential
was indicated in the present paper by clearly presenting
influence on individual process parameters on the out-
comes.

The drawback of the approach is its dependence on
reliable and abundant data that is sometimes hard to
obtain. Great attention must be paid to estimation of
accuracy of the model in imperfect conditions with
regard to the available data.9 This will remain the main
focus of future research, where influence of various fac-
tors on model accuracy will be studied which will even-
tually lead to procedures for reliable prediction of error
bounds, which is crucial for industrial use. This will
incorporate arrangements where controlled acquisition of
training data is possible, e.g. by using physics based
models. In this context, a large portion of work is devo-
ted to building a flexible, modular and scalable software
base to support such work. Finally, it should be noted,
that the presented methodology stimulated more careful
and complete data acquisition of the process parameters
in [tore Steel company, needed for continuation of the
present work and for better process repeatability as such.
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