
M. BABI^ et al.: PREDICTION OF THE HARDNESS OF HARDENED SPECIMENS ...

PREDICTION OF THE HARDNESS OF HARDENED
SPECIMENS WITH A NEURAL NETWORK

NAPOVED TRDOTE KALJENIH VZORCEV Z NEVRONSKIMI
MRE@AMI

Matej Babi~1, Peter Kokol2, Igor Beli~3, Peter Panjan4, Miha Kova~i~5,6,
Jo`e Bali~7, Timotej Verbov{ek8

1Ph. D. Researcher, Slovenia
2University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor, Slovenia

3Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
4Jo`ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

5[tore-Steel, d. o. o., @elezarska 3, 3220 [tore, Slovenia
6University of Nova Gorica, Laboratory for Multiphase Processes, Vipavska 13, 5000 Nova Gorica, Slovenia

7University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
8University of Ljubljana, Faculty of Natural Sciences and Engineering, A{ker~eva 12, 1000 Ljubljana, Slovenia

babicster@gmail.com

Prejem rokopisa – received: 2013-11-05; sprejem za objavo – accepted for publication: 2014-02-20

In this article we describe the methods of intelligent systems to predict the hardness of hardened specimens. We use the mathe-
matical method of fractal geometry in laser techniques. To optimize the structure and properties of tool steel, it is necessary to
take into account the effect of the self-organization of a dissipative structure with fractal properties at a load. Fractal material
science researches the relation between the parameters of fractal structures and the dissipative properties of tool steel. This
paper describes an application of the fractal dimension in the robot laser hardening of specimens. By using fractal dimensions,
the changes in the structure can be determined because the fractal dimension is an indicator of the complexity of the sample
forms. The tool steel was hardened with different speeds and at different temperatures. The effect of the parameters of robot
cells on the material was better understood by researching the fractal dimensions of the microstructures of hardened specimens.
With an intelligent system the productivity of the process of laser hardening was increased because the time of the process was
decreased and the topographical property of the material was increased.
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V tem ~lanku je uporabljena metoda inteligentnih sistemov za napovedovanje trdote kaljenih vzorcev. Uporabljena je
matemati~na metoda fraktalne geometrije v laserski tehniki. Za optimiranje strukture in lastnosti orodnega jekla je treba
upo{tevati vpliv samoorganizacije strukture z lastnostmi fraktalov. Fraktalna znanost o materialu raziskuje odnos med parametri
fraktalne strukture in disipativnimi lastnostmi orodnega jekla. ^lanek opisuje uporabo fraktalne dimenzije pri robotskem
laserskem kaljenju vzorcev. Z uporabo fraktalne dimenzije se lahko dolo~i sprememba v sestavi, ker je fraktalna dimenzija
pokazatelj kompleksnosti oblike vzorcev. Orodno jeklo je bilo kaljeno z razli~nimi hitrostmi z razli~nih temperatur. U~inek
parametrov robotske laserske celice na orodno jeklo se da bolj{e razumeti z raziskovanjem fraktalne dimenzije mikrostrukture
kaljenih vzorcev. Z inteligentnimi sistemi je bila pove~ana produktivnost procesa laserskega kaljenja, ker se zmanj{a trajanje
procesa in se pove~ajo topografske lastnosti materialov.

Klju~ne besede: fraktalna dimenzija, laser, kaljenje, nevronske mre`e

1 INTRODUCTION

Of all the microscopic methods, electron-microscopy
images give the best resolution, the most accurate infor-
mation of the distribution of crystals in a building, the
best morphology of various structural types and the best
structural surface topography. Fractal geometry provides
a new approach in describing the structures of various
irregular facilities. Fractal theory is also used in the field
of materials science. Models of fractal lines and surfaces
are created to describe the properties of the microstruc-
tures of materials. The subject of fractals can be used to
assist in an analysis of the surfaces encountered in robot
laser hardening. It should be noted that the morphology
of a surface will change if the material is hardened with
robot laser cells. An analysis of fractal dimensions is a
method used to study the surface properties of materials.
A fractal dimension1,2 is a property of fractals that is

maintained with all the magnifications and is, therefore,
well-defined but, in addition, it also reveals the comple-
xity of the fractal. In general, we cannot calculate the
fractal dimension for the above-mentioned procedure, as
this is possible only for purely mathematical constructs
and not in reality. In practical terms, to determine the
dimensions the most used method is that šof counting the
boxes’ (the box-counting dimension) that studies a frac-
tal cover using a square grid, which is then reduced and
the change in the number of the squares needed to cover
the entire crowd is observed. The result is, of course, an
approximation, which is calculated using the desired
number of places. In this research, a fractal analysis is
used to determine how the parameters of robot laser
hardening affect the hardness of a hardened material.
Robot laser surface-hardening heat treatment3–6 is com-
plementary to the conventional flame or inductive
hardening. The energy source for laser hardening is a
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laser beam that heats up very quickly achieving the metal
surface area of points up to 1.5 mm and a hardness of 65
HRc. Laser hardening is a process of projecting the
features such as non-controlled energy intake, high per-
formance constancy and accurate positioning process. A
hard martensitic microstructure provides improved
surface properties such as wear resistance and high
strength.7,8 A fractal analysis9,10 is useful when classical
geometry cannot be sufficiently useful to precisely des-
cribe the results of irregular facilities. A profound feature
of fractals is the fractal dimension D11–13 providing an
important view of the physical properties of various
materials. This article describes the fractal structure14,15

of robot laser-hardened tool steel. Fractal patterns were
found in different mechanical properties of hardened
materials (Mandelbrot 1982, Feder 1988). Fractal featu-
res were also observed in a mechanical computer simu-
lation, which can be explained with Gauss-Marc fractal
random fields. In this work, we have used a scanning
electron microscope (SEM)16,17 to search and analyse the
fractal structure of the robotic-laser-hardened material.
The aim of the research is to ascertain how the robotic-
laser-cell parameters for an optimum tempering affect
the fractal dimension of the hardened material.

2 MATERIAL PREPARATION AND
EXPERIMENTAL METHOD

2.1 Material preparation

The study was undertaken using the tool steel of DIN
standard 1.7225. The chemical composition of the mate-
rial included 0.38 % to 0.45 % C, 0.4 % maximum Si,
0.6–0.9 % Mn, 0.025 % maximum P, 0.035 % maximum
S and 0.15–0.3 % Mo. The specimen test section was in
a cylindrical form with the dimensions of 25 mm × 10
mm. After hardening the test specimen was cut into
smaller parts. The tool steel was forged with laser at
different speeds and different powers. So, we changed
two parameters, speed v � 2,5 mm/s with the steps of
1 mm/s and temperature T � (1000, 1400) °C in 50 °C
steps. In all these tests we recorded the microstructure.

We recorded the hardened surface area as well as the
deep hardened zone of the clips. Of interest to us was
whether the robotic laser-hardening parameters for diffe-
rent fractal structures resulted in microparticles. Also,
we wanted to understand or ascertain the fractal structure
of the optimum hardening parameters. Figure 1 shows
the longitudinal and transverse cross-section of the hard-
ened tool steel. Figure 2 shows the microstructure of the
hardened tool steel. Prior to testing, the specimens were
first subjected to mechanical and then to electrolytic
polishing18 in H3PO4 + CrO3. After polishing the micro-
structure was examined with a light microscope and with
field-emission scanning electron microscope, JEOL
JSM-7600F. Irregular surface textures with a few breaks,
presented as black islands, are seen in Figure 2.

2.2 Experimental method

The porosity was determined from the SEM images
of the microstructure. It is known that in a homoge-
nously porous material the area of the pores is equal to
the volume of the pores in specimens. The SEM pictures
were converted to binary images (Figure 3), from which
we calculated the areas of the pores for all the pictures
using the ImageJ program (ImageJ is a public domain, a
Java-based image processing program developed at the
National Institutes of Health). The area of the pores on
each picture of the material was calculated and then the
arithmetic mean and the standard deviation of the poro-
sity were determined. To analyze the possibility of an
application of the fractal analysis11–16 to the heat-treated
surface, we examined the relation between the surface
porosity and fractal dimensions depending on various
parameters of the robot laser cell. In fractal geometry,
the key parameter is fractal dimension D. The relation-
ship between fractal dimension D, volume V and length
L can be indicated as follows:

V ~ LD (1)

Fractal dimensions were determined using the box-
counting method which has been proven to have a higher
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Figure 2: SEM image of a hardened specimen
Slika 2: SEM-posnetek kaljenega vzorca

Figure 1: Hardened specimen
Slika 1: Kaljen vzorec



calculation speed and better accuracy by Dougan19 and
Shi20.

To analyse the results we used one method of the
intelligent system: the neural network.21 Artificial neural
networks (ANNs) are simulations of collections of model
biological neurons. A neuron operates by receiving sig-
nals from the other neurons through the connections
called synapses. A combination of these signals, in
excess of a certain threshold or activation level, will
result in the neuron firing, i.e., sending a signal to ano-
ther neuron, to which it is connected. Some signals act as
excitations and others as inhibitions of neuron firing.
What we call thinking is believed to be a collective effect
of the presence or absence of firings in the patterns of the
synaptic connections between neurons. In this context,
neural networks are not simulations of real neurons, as
they do not model the biology, chemistry or physics of a
real neuron. The basic building element of the neural

network used is an artificial-neural-network cell (ANN)
(Figure 4).

The analysis of covariance (generally known as AN-
COVA) is a technique that brings together the analysis of
variance and regression analysis. Covariance is a mea-
sure of how much two variables change together and
how strong the relationship is between them. ANOVA
can be extended to include one or more continuous varia-
bles that predict the outcome or dependent variable. Fig-
ure 5 presents the analysis of covariance.

3 RESULTS AND DISCUSSION

3.1 Results

Table 1 presents the parameters of the hardened spe-
cimens that have an impact on the hardness. We marked
the specimens with the codes from P1 to P19. Code X1
stands for the parameter of the temperature (°C), X2 is
the speed of hardening (mm/s), X3 is the fractal dimen-
sion and X4 is the base hardness (the hardness before
hardening). The last parameter, Y, is the measured hard-
ness of the robot laser-hardened specimens. Table 2 lists
the experimental and prediction hardnesses of the robot
laser-hardened specimens. With the fractal dimension we
described the complexity of the hardened specimens. In
Table 1, we can see that specimen P11 has the largest
fractal dimension, 1.978 4. Thus, specimen P11 is the
most complex. Specimen P1 has the highest hardness
after hardening, that is 60 HRc. Specimen P17 has the
lowest hardness after hardening, that is 52 HRc. Figure
6 shows a graph presenting the measured and predicted
hardnesses of the robot laser-hardened specimens. This
figure also presents a model of regression. Table 2 lists
the experimental and prediction data. The first column
gives the codes of the hardened specimens. The column
for Hardness (experimental data) gives the experimental
data for the hardness after hardening. The predictions
with a neural network are presented in the column for
Hardness (prediction with NN 36 %); in our case we
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Figure 4: General multi-layer neural-network system
Slika 4: Splo{ni sistem ve~plastne nevronske mre`e

Figure 5: Analysis of covariance
Slika 5: Analiza kovariance

Figure 3: Calculation of fractal dimensions with the box-counting
method
Slika 3: Ra~unanje fraktalne dimenzije z metodo rezanja {katel



used 12 datasets for the learn test set and 7 datasets for
the test set. In the column for Hardness (prediction with
NN 52 %) we used 10 datasets for the learn test set and 9
datasets for the test set; and in the column for Hardness
(prediction with NN 95 %) we used 18 datasets for the
learn test set and 1 dataset for the test set; we used the
leave-one-out method. We used program Neuralyst.
Neuralyst is a general-purpose neural-network engine
that was integrated with Microsoft® ExcelTM in the
WindowsTM or MacintoshTM systems. Neuralyst pro-
vides a user-friendly interface and a powerful, flexible
neural network that is self-programming. A researcher
acts as a coach to Neuralyst providing it with data and
letting it know the goals it should learn. Neuralyst will
then train itself on the data and goals the researcher has
set. During its training, it will report on how well it is

doing. We used a 4-layer network, learning at the rate of
0.6, with the moment of learning being 0.5, the tolerance
of the test set being 0.01 and the tolerance of the learning
set being 0.3. The neural-network modelling with the
36 % training data shows a 7.7 % deviation from the
measured data, the modelling with the 52 % training data
shows a 5.2 % deviation from the measured data and the
modelling with the 95 % training data shows a 2.3 %
deviation from the measured data. The regression model
shows a 4.7 % deviation from the measured data.

3.1.1 Model regression

Y = 48.99076743 + 0.008744915·X1 + 0.641369094·X2 –
1.71942784·X3 – 0.034224818·X4

We checked the reliability model with pattern P20
heat treated at 1200 °C at a speed of 6 mm/s. We cal-
culated the fractal dimension of the sample, which had a
value of 1.9692. Sample P20 had a hardness of 57 HRc.
The data were inserted into the model and we deter-
mined the deviations of the experimental values from the
model values. Table 3 shows the deviation of the pre-
dicted value for sample P20 from the experimental
measurements after heat treatment.

Table 3: Deviation of the predicted values for specimen P20 from the
experimental measurements after heat treatment
Tabela 3: Odmik napovedanih vrednosti vzorca P20 od eksperimen-
talnih meritev po toplotni obdelavi

Specimen

Hardness
(prediction
with NN

36 %)

Hardness
(prediction
with NN

50 %

Hardness
(prediction
with NN

95 %)

Hardness
(prediction

with
regression)

Deviation 4.32 % 2.91 % 1.23 % 3.12 %
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Figure 6: Measured and predicted hardnesses of the hardened
specimens
Slika 6: Izmerjene in napovedane trdote kaljenih vzorcev

Table 1: Parameters of the hardened specimens
Tabela 1: Parametri kaljenih vzorcev

Specimen X1 X2 X3 X4 Y
P1 1000 2 1.9135 34 60
P2 1000 3 1.9595 34 58.7
P3 1000 4 1.9474 34 56
P4 1000 5 1.9384 34 56.5
P5 1400 2 1.9225 34 58
P6 1400 3 1.9781 34 57.8
P7 1400 4 1.954 34 58.1
P8 1400 5 1.9776 34 58.2
P9 1000 2 1.972 60 57.4

P10 1000 3 1.858 58.7 56.1
P11 1000 4 1.9784 56 53.8
P12 1000 5 1.941 56.5 56
P13 1400 2 1.9782 58 55.3
P14 1400 3 1.581 57.8 57.2
P15 1400 4 1.965 58.1 57.8
P16 1400 5 1.8113 58.2 58
P17 800 0 1.9669 34 52
P18 1400 0 1.9753 34 57
P19 2000 0 1.9706 34 56

Table 2: Experimental and prediction data
Tabela 2: Eksperimentalni in napovedani podatki

Speci-
men

Hardness
(experi-
mental
data)

Hardness
(prediction
with NN

36 %)

Hardness
(prediction
with NN

52 %)

Hardness
(prediction
with NN

95 %)

Hardness
(prediction

with
regression)

P1 60 60.04404 57.66478 56.95868 54.56465
P2 58.7 58.65453 57.60106 57.12015 55.12693
P3 56 56.79983 57.5164 57.37326 55.7891
P4 56.5 56.75793 57.42825 57.5548 56.44594
P5 58 58.21552 57.79482 57.63685 58.04714
P6 57.8 57.48934 57.73722 57.68834 58.5924
P7 58.1 57.72849 57.65605 57.80268 59.27572
P8 58.2 57.478 57.58361 57.85767 59.87651
P9 57.4 59.39293 56.29186 55.42167 53.57422

P10 56.1 57.33137 56.21767 56.71604 54.4561
P11 53.8 56.83125 56.31979 56.76928 54.98285
P12 56 56.89147 56.19585 57.17863 55.67142
P13 55.3 60.36785 56.5345 57.19434 57.12963
P14 57.2 61.11235 57.35906 57.85592 58.46115
P15 57.8 60.55724 56.33986 57.59233 58.43199
P16 58 61.11235 56.2168 57.84021 59.33421
P17 52 61.11235 57.76515 53.96322 51.44111
P18 57 61.11235 57.93535 57.20306 56.67362
P19 56 61.11235 58.0907 57.87076 61.92865



3.2 Discussion

The hardness structure of the material is an important
mechanical property that affects the hardness of mate-
rials. We cannot apply Euclidian geometry to describe
the porosity of hardened specimens because porosity is
very complex. Here we use fractal geometry to describe
the hardness of the robot laser-hardened specimens. In
this paper we describe how the parameters (speed and
temperature) of a robot laser cell affect the hardness of
metal materials using a new method, fractal geometry.
Hardness has a large impact on the mechanical pro-
perties of a material. The fractal approach is more appro-
priate for characterizing complex and irregular surface
microstructures observed in the surfaces of robot laser-
hardened specimens and can be effectively utilized for
predicting the properties of the material from the fractal
dimensions of the microstructures. The fractal analysis
of a series of digitized surface microstructures of the
robot laser-surface-modified specimens indicated that
useful correlations can be derived between the fractal
dimensions and the surface microstructural features such
as hardness. Specimen P17 has the minimum hardness
after hardening, which is 52 HRc. We used two methods
of intelligent systems to make a prediction of the
hardness of the robot laser-hardened specimens. The
neural-network model gave us a better prediction than
the regression.

4 CONCLUSION

The paper presents the use of the method of an
intelligent system to predict the hardness of hardened
specimens. We used fractal geometry to describe the
mechanical property, the hardness of robot laser-hard-
ened specimens. Fractal structures were also found in the
robot laser-hardened samples when viewed under suffi-
cient magnification. The hardening of various metal
alloys has shown that when the melting occurs, fractal
geometry can be used to calculate the fractal dimension.
Using the box-counting method, we analysed the sam-
ples of equal-tempered metal, after subjecting them to
the robot laser hardening using various parameters. The
main findings can be summarized as follows:

• A fractal structure is found after the robot laser
hardening.

• The box-counting method allows us to calculate the
fractal dimensions for different parameters of laser
hardening robotic cells.

• The optimum fractal dimensions of different-para-
meter robot-laser-hardened tool steel have been iden-
tified.

• As in the robot-laser-hardening heat treatment of the
material, a deformation occurs, which is a self-simi-
lar fractal dimension and can be used to describe the
level irregularity.

• The fractal dimension varies between 1 and 2. By
increasing the temperature of the robot laser cell, the

fractal dimension becomes larger and the grain size
becomes smaller. Consequently, we can use the frac-
tal dimension as an important factor to define the
grain shape.

• The dependence of the fractal dimension on the hard-
ness was ascertained. This finding is important if we
know that certain alloys mix poorly because they
have different melting temperatures, but such alloys
have much higher hardnesses and better technical
characteristics. By varying different parameters (tem-
perature and speed) robot laser cells produce diffe-
rent fractal patterns with different fractal dimensions.

• Materials with higher fractal dimensions are less
porous than those with lower fractal dimensions.

• Specimens with lower fractal dimensions are the
hardest.

• With the correlation coefficients we show a connec-
tion between the hardness and the fractal dimensions
of the robot laser-hardened specimens.

• For the prediction of the porosity of hardened speci-
mens we used a neural network, a genetic algorithm
and multiple regressions.
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