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The present article focuses on the development of a comprehensive method for the optimization of the mechanical and
tribological properties of metal-matrix composites using multi-strategy ensemble particle-swarm optimization. An
aluminum-alloy matrix reinforced with coated B4C particles was used for the present study. The cohesion of the reinforcing
ceramic particles represents a very important factor, which is mostly poor at temperatures near the melting point of aluminum
and leads to the inferior mechanical and tribological properties of the developed aluminum matrix composites with a non
-uniform distribution of the reinforcement. The main reason for coating the particles is to improve the bonding between the
reinforcement and the molten alloy and thus to eliminate any interfacial reactions. The great enhancement in the strength values
of the composites in this study can be ascribed to the effective load-bearing capacity of the disintegrated B4C particles, which
are adherently bonded to the matrix alloy. Homogeneity and a reduction in the particle size of the B4C during the extrusion
process is evidenced in the microstructural studies.
Keywords: tribological properties, particle, extrusion process

^lanek je osredinjen na razvoj celovite metode za optimizacijo mehanskih in tribolo{kih lastnosti kompozitov s kovinsko
osnovo z uporabo optimizacije ve~ strategij zdru`evanja gru~ delcev. Za {tudij je bila uporabljena Al-zlitina, oja~ana z
oblo`enimi delci B4C. Kohezija opla{~enih kerami~nih delcev za utrjevanje je pomembna: navadno je slaba pri temperaturah
blizu tali{~a aluminija in povzro~a slab{e mehanske in tribolo{ke lastnosti razvitega kompozita na osnovi Al z neenakomerno
razporeditvijo delcev za oja~anje. Glavni namen opla{~enja delcev je izbolj{anje povezave med delcem za oja~anje in staljeno
zlitino ter odprava reakcij na povr{ini stika. Veliko pove~anje trdnosti kompozita v tej {tudiji se lahko pripi{e u~inkoviti
nosilnosti razpadlih delcev B4C, ki so adherentno vezani na osnovno zlitino. [tudije mikrostrukture so pokazale homogenost in
zmanj{anje delcev B4C med iztiskovanjem.
Klju~ne besede: tribolo{ke lastnosti, delec, postopek iztiskovanja

1 INTRODUCTION

The particle-swarm algorithm tries to simulate the
social behavior of a population of agents or particles, in
an attempt to optimally explore a given problem space.1

At a time instant (an iteration in the optimization con-
text), each particle is associated with a stochastic velo-
city vector, which indicates where the particle is moving
to2–5. The velocity vector for a given particle at a given
time is a linear stochastic combination of the velocity in
the previous time instant, of the direction to the particle’s
best position, and of the direction to the best swarm posi-
tions (for all particles).6 The particle-swarm algorithm is
a stochastic algorithm in the sense that it relies on para-
meters drawn from random variables, and thus different
runs for the same starting swarm may produce different
outputs.7 Some of its advantages are that it is simple to
implement and easy to parallelize.8,9 It depends, however,
on a few of parameters that influence the rate of con-
vergence in the vicinity of the global optimum.10 Overall,

it does not require many user-defined parameters, which
is important for practitioners that are not familiar with
optimization.11–13 Some numerical evidence seems to
show that a particle swarm can outperform genetic algo-
rithms on difficult problem classes, i.e., for uncon-
strained global optimization problems. Moreover, it fits
nicely into the pattern search framework.14,15

During the past decade, novel computational methods
have been introduced in some fields of engineering
sciences, including the solidification and deformation of
metal-matrix composites in materials science.16–18

Aluminum metal-matrix composites (AMCs) are gaining
importance as the most sought-after candidate materials
in the space and automotive industries owing to their
excellent properties, such as superior wear resistance,
low density and high specific stiffness.19–32 Several re-
ports have been published addressing the problems asso-
ciated with their developments, mechanical behavior,
microstructure and the distribution of particulates.33–41

Presently, particulate-reinforced composites are being
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produced by several different methods: powder metal-
lurgy, liquid metallurgy, diffusion bonding techniques,
infiltration, squeeze casting, compocasting and spray
deposition techniques.42–48 The most simplified approach
to develop near-net -shaped aluminum-based composites
is by the liquid metallurgy route as it is economical and
can result in mass production.18–20 Generally, these com-
posites consist of a metal matrix, which is melted during
casting, and ceramic reinforcement, which is added to
the molten matrix material by a mechanical stirrer.
However, some challenges need to be addressed in the
development of AMCs to intensify their uses in different
engineering fields, including inferior bond and interfacial
reaction product. These problems do have a direct dete-
riorating effect on the mechanical and tribological
properties of the composites, making them unsuitable for
industrial components.3 These challenges have been
addressed to by the use of coated reinforcement and the
addition of reactive metals like magnesium by several
researchers. In addition, instead of conventional stir-cast-
ing techniques, semi-solid agitation processes can be
employed. The benefits include reduced solidification
shrinkage, a lower tendency for hot tearing, suppression
of segregation, settling or agglomeration and faster
process cycles. These advantages are accompanied by a
lack of superheat (lower operating temperatures) as well
as a lower latent heat, which results in a longer die life
together with a reduced chemical attack of the reinforce-
ment by alloy, also a globular, non-dendritic structure of
the solid phase, which then explains the thixotropic
behavior of the material.18–20 Furthermore, these compo-
cast-coated composites can be subjected to secondary
processing such as extrusion and forging to improvise
upon the mechanical properties in particular strength
coupled with practical ductility.39–43 The purpose of this
study is first to investigate the effects of extrusion and
reinforcing coated particles on the microstructures and
mechanical properties of AA6061 aluminum alloy ma-
trix composites produced by compocasting. Another
objective is to solve the global problems using Multi-
strategy ensemble particle-swarm optimization, which
helps to increase the possibility of industrial application.

2 EXPERIMENTAL PROCEDURE

In this study, composites were produced by the com-
pocasting process using the mechanical mixing of the
AA6061 aluminum matrix, i.e., B4C particles. The
AA6061 aluminum alloy was produced from the mass
fraction w = 99.9 % pure aluminum that had been melted
and then a pure silicon master alloy in mass fractions of
Al–75 % Cr, Al–50 % Cu, and pure magnesium were
added in order. Boron carbide (B4C) in powder form is
used as the reinforcement, having a particle range size of
1–60 μm. We attempted to coat the B4C powders with
TiB2, which helps the incorporation of the particles and
reduces interfacial reactions. Titanium tetraisopropoxide
was selected as a sol-gel precursor and diluted with
ethanol. The boron carbide powders were first dispersed

in the ethanol using a stirrer and then titanium tetraiso-
propoxide and distilled water were added to the stirred
suspension. The processing was conducted at room tem-
perature at a solution pH of 7. The solution was then
aged for 105 min at room temperature, with constant,
gentle stirring. When titanium tetraisopropoxide is used
as the precursor, TiO2 can be produced by hydrolysis and
heat treatment. Since titanium oxide does not support
good wettability, it is converted to TiB2. Figure 1 pre-
sents the X-ray diffraction (XRD) analysis of the coated
powders.

The composites were developed using the stir-cast
method. The process involved melting the alloy in a gra-
phite crucible using an electrical resistance furnace. The
stirrer was positioned just below the surface of the slurry.
The furnace is controlled using a J-type thermocouple
located inside the gas chamber. The temperature of the
alloy was raised to about 680 °C and stirred at (400, 500,
600, 700) r/min using an impeller fabricated from
graphite and driven by a variable ac motor. The stirring
times were noted at (5, 10 and 15) min after the addition
of B4C during the process. Both TiB2 coated and un-
coated boron carbide was varied in proportions of volu-
me fractions (2.5, 5, 7.5, 10, 12.5, 15) %. The tempera-
ture of the furnace was gradually lowered until the melt
reached a temperature in the liquid-solid state (corres-
ponding to a 0.2 solid fraction) while the stirring was
continued. The coated particles were added uniformly at
a rate of 50 g/min over a time period of approximately 3
min. The casting was obtained by pouring the composite
slurry into a steel die placed below the furnace. A con-
tinuous purge of nitrogen gas is used inside and outside
the crucible to minimize the oxidation of the molten
aluminum. The cast matrix alloy and the developed
Al6061–B4C composites (both uncoated and TiB2

coated) were machined to 70 mm diameter and 200 mm
length. The machined billets were then subjected to hot
extrusion using a 200 t hydraulic extrusion press. The
extrusion billets were heated in a muffle furnace for 2 h.
An extrusion ratio of 1 : 10 with a constant ram velocity
(extrusion speed) of 2 mm/s was implemented. The ex-
truded Al6061 alloy and Al6061–B4C composites (both

M. O. SHABANI et al.: OPTIMIZATION OF THE MECHANICAL AND TRIBOLOGICAL PROPERTIES ...

460 Materiali in tehnologije / Materials and technology 48 (2014) 4, 459–466

Figure 1: X-ray diffraction (XRD) analysis of the coated powders
Slika 1: Rentgenska difrakcijska analiza opla{~enega prahu



uncoated and TiB2 coated) were subjected to metallo-
graphic studies, microhardness, tensile and wear tests.

Dry sliding wear tests were performed using pin-on-
disk apparatus, under a load of 10 N and 20 N against a
counterface steel disk of hardness 60 HRC. Cylindrical
specimens of 6 mm diameter and 25 mm height were
used as the test samples. Before the abrasion tests, each
specimen was polished to 0.5 μm. Figure 2 shows a
schematic diagram of the abrasion wear test. The expe-
riment was carried out at room temperature with water as
the lubricant. The wear loss was measured in the steady-
state regime using a linear variable differential trans-
ducer of accuracy 1 μm at the end of 30 min. The wear
rates were calculated from height-loss data. A set of
three samples was tested in every experimental condi-
tion, and the average along with the standard deviation
for each set of three tests was measured. The wear tests
were conducted up to the total sliding distance of 2000
m. The tensile test samples were machined according to
the ASTM E8M standard. Hardness measurements were
carried out using a Shimadzu Microhardness tester with
a load of 1 N for a period of 10 s. For each sample, five
hardness tests on randomly selected regions were per-
formed in order to eliminate the possible segregation
effects and obtain a representative value of the matrix
material hardness. During the hardness measurements,
precaution was taken to make an indentation at a distance
of at least twice the diagonal length of the previous
indention.

3 MODELING

3.1 Particle swarm optimization

The particle swarm optimization (PSO) was origi-
nally designed by Kennedy and Eberhart (Kennedy and
Eberhart, 1995) and has been compared to genetic algo-
rithms for efficiently seeking optimal or near-optimal
solutions in large search spaces.3 It is a new search tech-
nique, which simulates preying behavior among birds.2

In contrast to genetic algorithms, PSO does not need
genetic operations such as crossover and mutation. In-
stead, it changes the individuals by their random veloci-
ties in the solution space.49–54 Compared to evolutionary

algebra, the solution group presents greater randomness
and more benefits, such as faster searching speed, easy
implementation and global optimization.3 In the original
PSO with M particles, each particle is represented as a
potential solution to a problem in a D-dimensional space
and its position at the t-th iteration is denoted as:1
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where c1 and c2 are two positive constants, known as the
acceleration coefficients; r1 and r2 are two uniformly
distributed random numbers on the range (0.1) for the
j-th dimension of particle i. Vector pi = (pi1

t, pi2
t ... piD

t)
is the position with the best fitness found so far for the
ith particle, which is called the personal best (pbest) posi-
tion. And vector Qi = (Qt

1, pt
2 ... pt

D) records the best
position discovered by the swarm so far, known as the
global best (gbest) position. xi,j

t, vi,j
t and pi,j
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dimension of the vector of xi

t, vi,
t and pi

t, respectively.
The parameter w is the inertia weight used for the bal-
ance between the global and local search abilities.
Usually, w decreases linearly with the iteration genera-
tions as:1–4

w w
t w w

T
= −

−
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max min( )
(5)

where wmax and wmin are the maximum and minimum
weights and usually set to 0.9 and 0.4, respectively. T is
a predefined maximum number of iterations, and t
represents the number of the current iteration.

3.2 Multi-strategy ensemble particle swarm optimiza-
tion (MEPSO)

In MEPSO, all the particles are initially divided into
two parts; we denote them as part I and part II, res-
pectively. The two parts are considered to play different
roles in the search of dynamic environments by using
different strategies, which will be introduced as follows.
The role of part I is considered to search the global
optimum in the current environment as quickly as pos-
sible. Thus, similar operations as the standard PSO are
adopted to guarantee good convergence. Furthermore, a
Gaussian local search is introduced to enhance the local
search ability of part I, which is designed as follows:

At every iteration, for each particle, it has the pro-
bability Pls to perform the Gaussian local search defined
as Eqs. (4) and (6), and has the probability (1 – Pls) to
perform the conventional search defined as Eqs. (3) and
(4). The global best used in part I is the best solution
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Figure 2: Schematic diagram of the abrasion wear test
Slika 2: Shematski prikaz preizkusa abrazijske obrabe



found by all particles, both in part I and part II. The
Gaussian local search is defined as follows:

V ci j
t
,
+ = ∗1

3 gaussrand (6)

where i = 1, 2, ... m, gaussrand is a random number ge-
nerated from a standard normal distribution, c3 is a
positive constant. Although both strategies are designed
for local search, the Gaussian local search adopted in
part I of MEPSO is different from the quantum cloud
defined in MQSO; the distribution in quantum cloud is
uniform while Gaussian is not. The Gaussian local
search strategy defined as Eq. (6) has been testified by
many researches to be a good strategy to enhance the
ability of elaborate search. By performing a local search
with the probability Pls, a particle can search for the
optimum around its current position when it is on the
process of "flying" to the best position found by the
entire swarm.

Therefore, each particle has the chance to search for
its neighborhood, and it might be favorable to find the
optimum in dynamic multimodal environments. The role
of part II is considered to extend the searching area of
the algorithm, and to patrol around the part I to track the
changed global optimum possibly "escaped" from the
coverage of part I. To achieve this purpose, in part II,
each particle has a probability 0.5 to fly to get closer to
the personal best of a particle randomly chosen from part
I, and has probability 0.5 to fly to get farther away from
it. The operator is defined as Eq. (7), we call it differen-
tial mutation in this paper. It is implemented by changing
the direction of a particle’s velocity with a certain
probability. The position of the particle is still renewed
by Eq. (4):
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where Gj is the best solution found by particle a, which
is chosen randomly from part I at each iteration; r1, r2,
r3 are uniformly distributed random numbers in the
interval (0, 1); other parameters are the same as the ones
described in Section PSO. The strategy of differential
mutation may enhance the communication between part
I and part II, extend the particle’s search area, and
prevent the algorithm from being premature.

In part II, particles fly in a way totally different to the
standard PSO. There is no global attractor in part II, the
position of each particle in part II is determined by the
particle in part I via differential mutation strategy (each
particle has a probability of 0.5 to fly to get closer to the
personal best of a particle randomly chosen from part I,
and has probability of 0.5 to fly to get farther away from
it). The purpose of this strategy is to keep the particles in
part II flying around part I to extend the coverage of the

particle population to avoid being trapped into a local
optimum. The roles of the two parts in MEPSO are con-
sidered originally to be different. Part I is designed to
enhance the algorithm’s ability of exploitation, while
part II is designed to enhance the algorithm’s ability of
exploration. The two parts work separately, but particles
in these two parts are also interrelated. On the one hand,
the personal best of particles randomly chosen in part I
are used to compose the new velocities of the particles in
part II, and then influence their relative position with
respect to particles in part I. On the other hand, the best
solution found by part II can be the global attractor of
part I (if it is also the best of the entire swarm), which
will guide the part I fly to the new best (maybe the
changed optimum). The overall algorithm is summarized
as follows.
Step1: Randomize the positions and velocities of all the

particles in the search space. Set all the attractors to a
randomized particle position. Divide all the particles
into two parts. Set part I’s attractor to be the best
position of the entire swarm.

Step2: Evaluate the randomly chosen
Step3: IF the new value is different from the last itera-

tion, re-evaluate the function values at each particle
attractor in part I.

Step4: Re-randomize each particle in part II.
Step5: Update part I’s attractor.
Step6: FOR each particle i in part I IF random number <

Pls THEN, the random number within (0, 1), Apply
Eq. (6) to renew the velocity, perform a local search

ELSE, Apply Eq. (3) to renew the velocity.
Step7: FOR each particle j in part II, Randomly choose a

particle a from part I. Apply Eq. (7) to renew the ve-
locity.//including operator of differential mutation

Step8: FOR each particle j both in part I and part II
Apply Eq. (4) to renew the position.

Step9: Evaluate function at updated position. IF new
value better than particle attractor value THEN, Par-
ticle attractor j: position and value of particle

Step10: IF new value better than part I’s attractor value
THEN, Part I’s attractor: = position and value of par-
ticle

Step11: UNTIL number of function evaluations per-
formed > max
There are mainly two parameters that should be set

before the execution of the algorithm: the proportion of
part I to the whole population Pone, the probability Pls of
performing a Gaussian local search. The first parameter
may be used to control the contribution of part I and part
II to the whole performance of the algorithm, and there-
fore, has an influence on the trade-off between the algo-
rithm’s performance on convergence and diversity main-
tenance. The second parameter may be used to control
the proportion of particles in part I that perform the
Gaussian local search other than the conventional stra-
tegy of PSO, and thus has an influence on the trade-off

M. O. SHABANI et al.: OPTIMIZATION OF THE MECHANICAL AND TRIBOLOGICAL PROPERTIES ...

462 Materiali in tehnologije / Materials and technology 48 (2014) 4, 459–466



between the algorithm’s performance on local search and
global search.

4 EXPERIMENTAL RESULTS

The execution of extrusion in this study results in
compressive stresses and the fracturing of the hard cera-
mic particles within the deforming composites. Figure 3
shows the light microphotographs of extruded volume
fraction of Al6061–12.5 % B4C composites. It should be
noted that a combination of the semi-solid technique and
extrusion in the fabrication of these composites leads to a
reasonably uniform distribution of particles in the matrix
and avoids clustering or agglomeration of the reinforcing
phase. The presence of segregated B4C particles can be
easily recognized in the case of uncoated composites.
Coated B4C particles appear more homogeneous
throughout the extruded matrix alloy. It is assumed that

TiB2 coating improves the wetting kinetics in the liquid
aluminum, which results in a uniform distribution of the
coated B4C particles.22–26

The variation in the hardness of the extruded Al6061
alloy and its composites with the volume fraction of B4C
particles is presented in Figure 4. It is observed that the
hardness of the composite samples increases with an
increase in the B4C content. However, coated composites
exhibit a higher hardness compared to the uncoated ones.
Figures 5 and 6 show the results of the tensile strength
in the extruded Al6061 alloy and its composites. In
general, it is noted that both the yield strength and the
ultimate tensile strength increase with the increasing the
volume fraction of the incorporated B4C particles for all
the materials studied. The improvement in the tensile
strength of the composites is the outcome of a higher dis-
location density and plastic constraint in the matrix. The
strain-hardening of the composites is expected to be
influenced by the dislocation density, the dislocation-to-
dislocation interaction and the constraint of the plastic
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Figure 4: The influence of B4C reinforcement on the hardness of the
composites
Slika 4: Vpliv dodatka delcev B4C na trdoto kompozita

Figure 3: The light micrographs: a) unreinforced Al6061, b)
Al6061-12.5 % uncoated B4C, c) Al6061–12.5 % coated B4C
Slika 3: Mikrostruktura: a) neoja~an Al6061, b) Al6061–12,5 %
neopla{~en B4C, c) Al6061–12,5 % opla{~en B4C

Figure 5: The influence of B4C reinforcement on the yield strength of
the composites
Slika 5: Vpliv dodatka delcev B4C na mejo plasti~nosti kompozita



flow due to the resistance offered by the particles. The
matrix could flow only with the movement of the B4C
particles or over the particles during plastic deforma-
tion.31–39

Given the fact that the maximum solubility of B and
C inside Al melt is not high, these two elements dis-
solute and saturate the melt rapidly in the case of un-
coated composites, which leads to the nucleation of other
products on impurity seeds or at the B4C surface from
the supersaturated melt. However, in the case of coated
composites, most of the initial B4C and Al remain un-
reacted, indicating the phases are conserved for desirable
applications. The XRD pattern of the coated B4C-rein-
forced composites is displayed in Figure 7. It can be
seen that B4C, TiB2 and aluminum are present and no
other reaction products are formed in the system. It is
interesting to note that the rate of improvement in the
yield strength and the ultimate tensile strength of the
coated reinforced composites is higher when compared
with the uncoated samples, which can be attributed to a
number of reasons, including the absence of interfacial
reactions in coated reinforced composites. In addition, a
more uniform distribution of particles and a smaller

inter-particle distance in the case of coated composites
cause the matrix to become considerably constrained and
this results in a higher degree of improvement in flow
stress and UTS.

Figure 8 shows the influence of B4C reinforcement
on the wear rates of the Al6061 alloy. It is clear that the
wear rates of the Al6061 alloy decrease with the addition
of the B4C reinforcement. This improvement in the wear
resistance of the composites can be attributed to the for-
mation of mechanically mixed layers (MML) consisting
of oxides of iron and aluminium during the sliding of
composites on hard steel surfaces. It should be noted that
coated composites exhibit a higher wear resistance than
the Al6061 matrix alloy and the uncoated composites.
The higher hardness, the uniform distribution of particles
through the matrix alloy and the strong interfacial bond
that exists between the matrix and the reinforcement in-
crease the load-bearing capacity and minimize the matrix
contact area in case of the coated B4C reinforced com-
posite. Figure 9 shows the worn surfaces of the unrein-
forced Al alloy and the composites. Extensive cracking
and shearing are observed on the worn surfaces of the Al
alloy. SEM micrographs indicate wider grooves and a
greater extent of the damaged area on the worn surfaces
of the uncoated samples, compared to the coated ones.

5 MODELING RESULTS

For MEPSO, the parameters used in Eqs. (4) and (7)
are: w = 0.25, c1 = c2 = 2.0. Unless stated otherwise, the
probability of a Gaussian local search Pls is set to be
0.15, and the coefficient c3 in Eq. (6) is set to be 0.3. The
proportion of part I Pone = 0.3, and the proportion of part
II (1 – Pone) = 0.7, i.e., the ratio of part I and part II was
3 : 7. When the dimensionality of the solution space in-
creases, the problem becomes more and more difficult
due to the increase in the number of local optima;
therefore, the algorithms are more likely to be trapped
into the local optimum. As can be seen, MEPSO has the
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Figure 8: The influence of B4C reinforcement on the wear rates of the
composites
Slika 8: Vpliv delcev B4C na hitrost obrabe kompozita

Figure 6: The influence of B4C reinforcement on the UTS of the com-
posites
Slika 6: Vpliv dodatka delcev B4C na natezno trdnost kompozita

Figure 7: XRD pattern of the coated B4C reinforced composites
Slika 7: Rentgenska difrakcija kompozita z opla{~enimi delci B4C



best performance in all the dimensionality conditions,
and the offline error gap between the MEPSO and other
algorithms becomes larger and larger as the dimension-
ality increases. In the following experiments, for
MEPSO we use the method of re-evaluating five ran-
domly chosen "sentry" particles to detect the change of
the environments. When the changes have been detected,
we re-evaluate each particle’s best position and current
position in part I, and then update each memory with the
better position. The re-randomization mechanism is
applied to all the particles in part II after the environment
changes. The methods of detecting changes and handling
outdated memories of the compared algorithms are the
same as that adopted in1–5. It is clear that MEPSO copes
well with both unimodal and multimodal dynamic pro-
blems. A possible reason may stem from the ensemble of
multiple strategies: from the experimental analysis, it can
be observed that the mechanisms used in part I have a
good effect on the convergence performance of the
algorithm; while the mechanisms adopted in part II can
extend the coverage of the particle population to avoid
being trapped into the local optimum, and to enhance the
ability of catching up with the changing optimum in
dynamic multimodal environments. Figure 10 shows the
effect of iteration number on the global fitness of the
developed model. The numbers of the iteration were
selected to be 2000.

The value of Pls varies from 0.0 to 0.9. Good results
are achieved for 0.1 = Pls = 0.2 in various severity and
multimodal environments. When Pls > 0.4, the perfor-
mance gets rapidly worse as the value of Pls increases. It
is obvious that when the value of Pls is set to be close to
or equal to 0, the results are getting much worse than
those attained for 0.1 = Pls = 0.2. From the experimental
results it is clear that, it is effective to perform a proper
local search for the particles in part I. The value of Pls

must not be too large or too small, i.e., 0.1 = Pls = 0.2 is
the best choice. What is more, the same conclusion can
be drawn for various dynamic problem settings; in other
words, the performance of MEPSO is rather robust to
various dynamic problems with the parameter Pls setting
range from 0.1 to 0.2. The final optimized parameters are
617.48 s stirring time, 644.26 r/min speed of stirrer,
31.43 μm particle size of B4C, 11.53 % volume fractions
of B4C, 87.21 VHN hardness, 0.43 % porosity, 277.21
MPa UTS, 133.57 MPa yield strength, 0.06 10–3 mm3/(N
m) wear rates and 5.73 % elongation. The results show
that the novel technique implemented in this investi-
gation has an acceptable performance. Therefore, this
work shows the usefulness of an intelligent way to pre-
dict the performance of aluminum matrix composites
using Multi-strategy ensemble particle-swarm optimiza-
tion.

6 CONCLUSION

In MEPSO, the whole population of particles is
divided into two parts: part I works as a standard PSO
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Figure 10: The effect of iteration number on the global fitness
Slika 10: Vpliv {tevila ponovitev na globalno zmogljivost modela

Figure 9: Worn surfaces of the unreinforced Al alloy and the com-
posites: a) unreinforced Al6061 alloy, b) Al6061–10 % uncoated B4C,
c) Al6061-10 % coated B4C
Slika 9: Obrabljena povr{ina neoja~ane Al-zlitine in kompozitov: a)
neoja~ana zlitina Al6061, b) Al6061–10 % neopla{~en B4C, c) Al6061
–10 % opla{~en B4C



enhanced with a Gaussian local search strategy, part II
works as a patrol team around part I to extend the search
area of the algorithm, and to catch up with the moving
optimum. It is concluded that extrusion of the fabricated
composites helps to reduce the B4C particles size in both
TiB2 coated and uncoated B4C reinforced composites.
This can be attributed to fact that, the execution of the
extrusion results in compressive stresses and therefore
fracturing of the hard ceramic particles within the de-
forming composites. It should be noted that the particle
distribution in the coated composites is much more
uniform than the uncoated ones. The strong interfacial
bond that exists between the matrix and the reinforce-
ment in the case of coated B4C reinforced composites
contributes significantly to the improved wear resistance
by increasing the load-transfer efficiency between the
matrix and the reinforcement. Furthermore, a poor
interfacial bond between the hard B4C reinforcement and
the soft matrix alloy will lead to the three-body abrasive
wear phenomenon.
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