In this study, Fe-Pd based amorphous alloys with a nanoporous structure were successfully prepared with dealloying treatment and their catalytic properties were investigated during the decomposition of formic acid (HCOOH). Fe₆₀Pd₂₀P₂₀ amorphous-alloy ribbons with 1 mm in width and 25 μm in thickness were prepared using vacuum melt-spinning. Then, nanoporous amorphous alloys with a three-dimensional uniform network structure were prepared with electrochemical dealloying in a sulfuric acid (H₂SO₄) solution, using the Fe₆₀Pd₂₀P₂₀ amorphous ribbons as the precursor alloy. Finally, the electrocatalytic properties of these nanoporous amorphous alloys were studied with cyclic voltammetry. In a mixed solution of H₂SO₄ (0.5 mol/L) and HCOOH (0.5 mol/L), the catalytic results showed that the nanoporous amorphous alloy dealloyed at a constant potential of 0.72 V exhibited an obviously negative shift of 0.35 V in the oxidation-peak potential of HCOOH, while the oxidation-peak current density increased about 34 times. This means that the Fe-Pd based nanoporous amorphous alloy has an obvious catalytic effect on the decomposition of HCOOH.

Keywords: nanoporous, amorphous alloy, dealloying, formic acid, electrocatalysis

1 INTRODUCTION

Nanoporous metal materials have attracted much attention in recent years because of their high specific surface area and special interface characteristics. Therefore, they have been applied in many fields such as catalysis, sensors, filters, optical detectors and supercapacitors. The preparation methods for nanoporous materials include the template method, dealloying method, layer self-assembly technology and so on. Among these preparation methods, the dealloying method utilizes the large difference in the electrode potential between the alloy components. The active components rapidly dissolve in the electrolyte, while the inert components diffuse and recombine to form a three-dimensional connective porous network structure. Compared with the other methods, the dealloying method has the advantages of a low cost, simple and efficient process and easy industrialization. Since J. Erlebacher et al. reported on a nanoporous metal structure with pore sizes of 2–50 nm obtained with the dealloying method in 2001 any nanoporous metal materials have been reported, including binary alloys of Cu-Pd, Pd-Au, Cu-Pt, Ni-Pt, Ag-Pd and Ag-Cu, and ternary or multi-component alloys of Ag-Au-Pt, Al-Pd-Au, Mg-Ni-Y and Cu-based, Pt-based, Mg-based, Pd-based and Al-based alloy systems. However, there are few reports on Fe-based nanoporous amorphous alloy, which is used to study the electrocatalytic properties of Fe-based nanoporous alloy.
fore, amorphous alloys are ideal precursors for nanoporous metal materials obtained by dealloying. They provide a new idea for preparing ternary or multi-component nanoporous materials by dealloying.

In this study, an Fe$_{60}$Pd$_{20}$P$_{20}$ amorphous alloy was chosen as the precursor for dealloying. The effect of the constant potentials on the preparations of nanoporous amorphous alloys was first investigated. And then, the catalytic properties of these Fe-based nanoporous amorphous alloys with respect to formic acid (HCOOH) were also further studied with the electrochemical method.

2 MATERIALS AND METHODS

2.1 Materials

Fe (99.9 w/%), Pd (99.9 w/%) and the prealloyed ingot of Fe$_3$P (99.5 w/%) were purchased from Sigma-Aldrich (China). Analytical-grade sulfuric acid (H$_2$SO$_4$) and HCOOH were purchased from Sinopharm Chemical Reagent Co. Ltd.

2.2 Methods

Fe$_{60}$Pd$_{20}$P$_{20}$ alloy ingots were prepared by vacuum induction melting under a high purified-argon atmosphere using the elements of high purity including Fe, Pd and Fe$_3$P. The Fe$_{60}$Pd$_{20}$P$_{20}$ amorphous-alloy ribbons with 1 mm in width and 25 μm in thickness were prepared by melt-spinning. The structure of the amorphous ribbons was examined with X-ray diffraction (XRD, X’Pert Powder, PANalytical B.V. Company) with a Cu-Kα radiation. The morphologies of the amorphous ribbon and dealloying samples were observed with a field-emission scanning electron microscope (FESEM, ZEISS sigma 500, Carl Zeiss AG Company) and the compositions were determined with energy-dispersive spectrometer (EDS, QUANTAX, Bruker Corporation).

The electrochemical experiment and dealloying treatment were performed in a standard three-electrode cell with an electrochemical workstation (CHI660D, Shanghai Chenhua Device Company). The Fe$_{60}$Pd$_{20}$P$_{20}$ amorphous alloy ribbon was used as the working electrode and an Ag/AgCl electrode was used as the reference electrode with a platinum electrode as the counter electrode. The dealloying treatments at different constant potentials were carried out in an H$_2$SO$_4$ (1 mol/L) for 2 h. The morphologies and compositions of the samples were observed with XRD, FESEM and EDS.

The prepared nanoporous sample was adhered to a glassy carbon electrode with a Nafion solution and this glassy carbon electrode was used as the working electrode. Hg/H$_2$SO$_4$ was used as the reference electrode with a platinum wire as the counter electrode. Electrochemical activities were evaluated with a cyclic voltammetric curve obtained in the mixed solution of H$_2$SO$_4$ (0.5 mol/L) and HCOOH (0.5 mol/L). The scanning rate was 50 mV/s.

3 RESULTS AND DISCUSSION

3.1 Alloy design and amorphous characteristic

In order to obtain homogeneous nanoporous materials, the amorphous alloy precursor should meet the requirements of the dealloying method as well as Inoue’s principles for the preparation of amorphous alloys.26,27 The dealloying requirements include four points: 1) the alloy should have a wide single-phase region; 2) the electrode potential differences between the alloying elements should be large enough; 3) the highly active element should be the main component of the alloy; and 4) the diffusion rate of the inert elements at the interface of the alloy and electrolyte should be fast enough. The mixing enthalpies of the three elements in the Fe$_{60}$Pd$_{20}$P$_{20}$ alloy are –4 KJ/mol for Fe-Pd, –36.5 KJ/mol for Pd-P and –39.5 KJ/mol for Fe-P, respectively,28 and all the values are negative. In addition, the atomic radiuses are 0.1241 nm for Fe, 0.1376 nm for Pd and 0.1000 nm for P. All the ratios of atomic radiuses are more than 12 %, meeting Inoue’s principles. These data ensure that a uniform amorphous state is easily obtained in the Fe$_{60}$Pd$_{20}$P$_{20}$ alloy.

On the other hand, the standard reduction potentials are –0.440 V for Fe and 0.987 V for Pd, with the standard hydrogen electrode as the reference electrode.29 The potential difference between Fe and Pd is large enough. Moreover, the Fe element is easy to corrode and dissolve in an acid solution, and Pd easily diffuses and recombines to form a three-dimensional connective porous network structure.26,30 And then, the addition of the P element can promote the formation of the nanoporous structure and enhance the catalytic property and stability of the nanoporous material.31 Finally, from an economic point of view, the active Fe element is cheap and easy to get, and Pd is a relatively cheap precious metal as its price is only half of the price for gold. Because of the

![Figure 1: XRD pattern of Fe$_{60}$Pd$_{20}$P$_{20}$ amorphous-alloy ribbon](image-url)
above good features, the Fe60Pd20P20 amorphous alloy was designed as the precursor alloy in this study. The XRD pattern of the Fe60Pd20P20 amorphous-alloy ribbon is shown in Figure 1. The XRD pattern shows a broad peak around 2θ = 40–48° and no distinguishable diffraction peaks of crystalline phases, which indicates that the prepared Fe60Pd20P20 alloy ribbon is amorphous.

3.2 Analysis of the electrochemical property of the amorphous alloy

Figure 2 shows a dynamic-potential polarization curve of Fe60Pd20P20 in 1 mol/L H2SO4 electrolyte exposed to air at 298 K. The interval form I to II on the polarization curve is the electro-dissolution range. The current density increases rapidly to reach the maximum with the positive shift of the metal electrode potential and the active metal element dissolves, as shown with the equation Fe → Fe2+ + 2e−. When the potential exceeds point II, the metal electrode material is partially electrochemically passivated, which reduces the dissolution rate. Thus, the current density rapidly drops from the highest value to point III, and the interval from II to III is the electrode transition zone. When the potential exceeds point III, the metal electrode is in a stable state and the current density hardly changes with the voltage. Therefore, the polarization curve is almost a straight horizontal line and the interval from III to IV is a stable zone.

In the study, the constant potentials of 0.72 V (dissolution zone), 0.77 V (transition zone) and 0.97 V (stability zone) were selected for dealloying experiments. The effect of the constant potentials on the preparation of the Fe-Pd based nanoporous amorphous alloys was investigated. Figure 3 shows the changes in the current densities of the Fe60Pd20P20 amorphous ribbons with the dealloying times. When the constant potential is 0.72 V, the electrochemical reaction on the metal electrode is Fe → Fe2+ + 2e− and the current density increases with the dealloying time. When the constant potential is 0.77 V in the dissolution zone of the polarization curve, the corrosion rate of Fe was greatly increased. The EDS results showed that the Fe content in the sample significantly decreased to 42.05% (Table 1), indicating that Fe was corroded and dissolved in the electrolyte (Fe → Fe2+ + 2e−). In the process of Fe corrosion, Pd diffused and recombined to form a nanoporous structure. However, as the ligament was relatively thick, no three-dimensionally connected pore structure was formed.

Figure 4a shows the SEM morphology of an original Fe60Pd20P20 amorphous alloy ribbon (as-quenched). No crystalline phase was observed on the surface of the sample, which is consistent with the XRD result. Figure 4b shows the morphology of the sample prepared by dealloying at a constant potential of 0.72 V for 2 h (NP-Pd1). A large number of pores with diameters of 10–25 nm appeared on the surface of the sample and nanoporous structures were observed. When the dealloying constant potential was 0.72 V in the dissolution zone of the polarization curve, the corrosion rate of Fe was greatly increased. The EDS results showed that the Fe content in the sample significantly decreased to 42.05% (Table 1), indicating that Fe was corroded and dissolved in the electrolyte (Fe → Fe2+ + 2e−). In the process of Fe corrosion, Pd diffused and recombined to form a nanoporous structure. However, as the ligament was relatively thick, no three-dimensionally connected pore structure was formed.

Figure 4c shows the morphology of the sample prepared by dealloying at a constant potential of 0.77 V for 2 h (NP-Pd2). A lot of pores with diameters of 50–90 nm appeared on the surface of the sample. The EDS results showed that the content of Fe was reduced because Fe in the sample was corroded and dissolved in the electrolyte (Fe → Fe2+ + 2e−). Compared with the sample prepared at the constant potential of 0.72 V, the Fe and Pd content changed less because the dealloying constant potential
was 0.77 V in the transition region of the polarization curve. Parts of the reaction should thus be \(\text{Fe} + \text{H}_2\text{O} \rightarrow (\text{FeOH})_{\text{ad}} + \text{H}^+ +\text{e}^- \) and \((\text{FeOH})_{\text{ad}} + \text{H}_2\text{O} \rightarrow [\text{Fe(OH)}_2]_{\text{ad}} + \text{H}^+ + \text{e}^- \). The formation from the corrosion reaction adheres to the surface of the sample, thus limiting further corrosion. Therefore, it is possible to form uniform nanoporous structures.

Table 1: EDS analysis results for different nanoporous alloys

<table>
<thead>
<tr>
<th>Nanoporous alloy</th>
<th>Element content (a%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-Pd1</td>
<td>Fe</td>
</tr>
<tr>
<td>NP-Pd2</td>
<td>Fe</td>
</tr>
<tr>
<td>NP-Pd3</td>
<td>Fe</td>
</tr>
</tbody>
</table>

Figure 4d shows the morphology of the sample prepared by dealloying at a constant potential of 0.97 V for 2 h (NP-Pd3). A lot of pores with diameters of 30–50 nm appeared on the surface of the sample and a three-dimensional porous network structure was observed. The size of the ligament was about 10 nm. The EDS results for each elements showed that the changes were small (Table 1) as the dealloying constant potential was 0.97 V in the stable region of the polarization curve. The dealloying rate was low enough, resulting in the formation of three-dimensional uniform nanoporous structures. In a word, using an Fe\(_{60}\)Pd\(_{20}\)P\(_{20}\) amorphous alloy ribbon as the precursor, nanoporous amorphous alloys with a three-dimensional uniform network structure can be prepared by electrochemical dealloying. Meanwhile, the constant potentials of the dealloying process have an important influence on the compositions and morphologies of the nanoporous amorphous alloys.

3.4 Electrochemical activities of nanoporous amorphous alloys

Figure 5 shows cyclic voltammetric curves of the alloy samples from 0.5 mol/L H\(_2\)SO\(_4\) solution. The curves clearly reflect the hydrogen-evolution and oxygen-evolution processes of the electrodes as well as the adsorption and desorption behaviours of hydrogen and oxygen. Hc is the reduction peak of hydrogen, while Ha is the oxidation peak of hydrogen. Based on the adsorption/desorption peak area of hydrogen, the electrochemical active surface area (ECSA) was obtained. The larger the electrochemical active surface area, the better is the catalytic activity of the amorphous alloy. As shown in Figure 5, the redox peak of the as-quenched sample was very small. The NP-Pd1 sample showed the largest adsorption/desorption peak area of hydrogen, the electrochemical active surface area (ECSA) was obtained. The larger the electrochemical active surface area, the better is the catalytic activity of the amorphous alloy. As shown in Figure 5, the redox peak of the as-quenched sample was very small. The NP-Pd1 sample showed the largest adsorption/desorption peak area of hydrogen, the electrochemical active surface area (ECSAs) in Figure 6 of the samples were calculated with Equation (1). The ECSA value of the

\[\text{ECSA} = \frac{A_{\text{peak}}}{C} \]
as-quenched sample was 0.31×10⁻³ cm²/g and the ECSA values of samples NP-Pd1, NP-Pd2 and NP-Pd3 were 90, 22 and 5 times larger than that of the as-quenched sample, respectively. These results indicate that the ECSA values of the nanoporous amorphous alloys were increased and the NP-Pd1 sample had the maximum ECSA value.

\[\text{ECSA (cm}^2/\text{g}) = \frac{\text{Charge (mC/cm}}{\text{2})}}{\text{Catalyst loading (g/cm}^2) \times 210 \text{ (mC/cm}^2) \]

The charge is the total amount of the catalyst surface charge obtained by integrating the adsorption/desorption peak areas of hydrogen on the CV curve.

3.5 Electro catalytic properties of nanoporous amorphous alloys for the decomposition of HCOOH

Figure 7 shows the cyclic voltammetric curves of the alloy samples in 0.5 mol/L H₂SO₄ + 0.5 mol/L HCOOH solution. The results showed the nanoporous samples exhibited oxidation peaks in the positive and negative sweeps of HCOOH. In the positive sweep of HCOOH, CO₂ formed during the oxidation reaction. The reaction equation was HCOOH → CO₂ + 2H⁺ + 2e⁻ and the adsorption of CO₂ was very weak on the surface of Pd. According to the potentials and current densities of the oxidation peaks for different alloy samples, we can determine the electrocatalytic properties of nanoporous amorphous alloys. The potentials and current densities of the oxidation peaks were 0.15 V and 4.5 A/m² for the as-quenched sample, −0.2V and 155 A/m² for NP-Pd1, −0.2V and 115 A/m² for NP-Pd2 and −0.2V and 14 A/m² for NP-Pd3 (Figure 7).

Compared with the as-quenched sample, the potential of NP-Pd1 was negatively shifted by 0.35 V and the current density of NP-Pd1 was enhanced 34 times, the potential of NP-Pd2 was negatively shifted by 0.35 V and the current density of NP-Pd2 was enhanced 26 times, and the potential of NP-Pd3 was negatively shifted by 0.40 V and the current density of NP-Pd3 was enhanced 3 times. Anyway, compared with the Fe₆₀Pd₂₀P₂₀ amorphous ribbon, the potentials of the oxidation peaks for the nanoporous samples were negatively shifted by 0.35–0.4 V and all the current densities of the oxidation peaks were obviously improved. Therefore, the prepared nanoporous amorphous alloys showed catalytic properties on the decomposition of HCOOH.

In the dealloying process, the Fe element corroded and dissolved, while the Pd element diffused and recombined to form nanoporous structures. As a result, the active surface areas were significantly enlarged. Fe atoms can affect the electron structure on d orbital of Pd atoms due to a stress-induction effect, thus increasing the catalytic activities of Pd. In addition, Pd atoms have a special affinity with hydrogen, which causes the HCOOH molecules to be quickly dehydrogenated on the surface of Pd, and the reaction formula is HCOOH → CO₂ + 2H⁺ + 2e⁻. Pd absorbs the reactants to activate the molecules by chemical adsorption bonding. Therefore, the activation energy of the reaction is reduced and thus the catalytic reaction rate of HCOOH is increased. Sample
NP-Pd1 has the highest Pd atomic content (42.32 %), which greatly improves the catalytic effect of sample NP-Pd1 on HCOOH. In contrast to the Fe_{60}Pd_{20}P_{20} amorphous ribbon, all the nanoporous amorphous alloys showed improvements in the catalytic properties on the decomposition of HCOOH.

4 CONCLUSIONS

In summary, Fe_{60}Pd_{20}P_{20} amorphous-alloy ribbons with 1 mm in width and 25 μm in thickness were prepared with vacuum induction melting and vacuum melt-spinning. The dealloying constant potentials have an important influence on the morphologies of nanoporous amorphous alloys. Three-dimensional nanoporous amorphous alloys with diameters of 20–40 nm were prepared by dealloying at a constant potential of 0.72 V for 2 h in 1 mol/L H_{2}SO_{4} solution using the Fe_{60}Pd_{20}P_{20} amorphous ribbons as the precursor alloy. The nanoporous amorphous alloys had more surface active area and their electrocatalytic properties for HCOOH were enhanced. The nanoporous amorphous alloy obtained at 0.72 V (NP-Pd1) exhibited the maximum surface active area and the best electrocatalytic effect among all the alloys. In the decomposition of HCOOH, compared with the Fe_{60}Pd_{20}P_{20} amorphous ribbon, all the nanoporous amorphous alloys showed an increase in the catalytic properties. Among them, NP-Pd1 showed the best performance. The oxidation-peak potential was negatively shifted by 0.35 V and the oxidation-peak current density increased about 34 times in 0.5 mol/L H_{2}SO_{4} + 0.5mol/L HCOOH solution.

Acknowledgment

This work was sponsored by the National Natural Science Foundation of China (Grant No. 51501084), Natural Science Foundation of the Liaoning Province (Grant No. 201602398) and Foundation of the University of Science and Technology Liaoning (Grant No. 2015RC01).

5 REFERENCES

X. Li et al.: PREPARATION OF Fe-Pd BASED NANOPOROUS AMORPHOUS ALLOYS AND THEIR ELECTROCATALYTIC ...

28 A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46 (2005), 2817–2829, doi:10.2320/matertrans.46.2817

Materiali in tehnologije / Materials and technology 54 (2020) 5, 661–667

667